Ren Shiying, Xu Xin, Hu Kunsheng, Zhong Shuang, Gao Yingjie, Johannessen Bernt, Ren Wei, Zhou Hongyu, Zhu Zhong-Shuai, Chen Yidi, Duan Xiaoguang, Wang Shaobin
School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia.
Australian Synchrotron, ANSTO, Victoria, VIC, Australia.
Nat Commun. 2025 Sep 2;16(1):8194. doi: 10.1038/s41467-025-63648-z.
Upcycling plastic waste into single-atom catalysts (SACs) not only offers a sustainable solution for plastic waste management but also yields valuable functional materials for catalytic applications. Here, we report a simple and scalable method to transform various types of plastics, including polyethylene, polypropylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, and their mixtures, into a diversity of porous SACs with different coordination chemistry and their excellent applications in a variety of catalytic reactions. Lamellar transition metal chloride salts (Ni, Fe, Co, Mn, and Cu) are employed as a template and catalyst for confined carbonization of plastics into layered SACs. An appropriate plastic-to-salt ratio is the key factor for preventing metal agglomeration during SAC synthesis. The SACs demonstrate exceptional catalytic activity in oxidative degradation of a range of persistent organic pollutants for water treatment and excel in electrocatalytic systems such as oxygen/nitrogen reduction reactions and lithium-sulfur batteries. This technique provides a versatile, scalable, and efficient strategy for upcycling solid wastes into high-performance materials for environmental and energy catalysis.
将塑料废物升级转化为单原子催化剂(SACs)不仅为塑料废物管理提供了一种可持续的解决方案,还能产生用于催化应用的有价值功能材料。在此,我们报告了一种简单且可扩展的方法,可将包括聚乙烯、聚丙烯、聚苯乙烯、聚对苯二甲酸乙二酯、聚氯乙烯及其混合物在内的各种类型塑料转化为具有不同配位化学的多种多孔SACs,并展示了它们在各种催化反应中的优异应用。层状过渡金属氯化物盐(镍、铁、钴、锰和铜)被用作模板和催化剂,用于将塑料限制碳化成为层状SACs。合适的塑料与盐的比例是在SAC合成过程中防止金属团聚的关键因素。这些SACs在用于水处理的一系列持久性有机污染物的氧化降解中表现出卓越的催化活性,并且在诸如氧/氮还原反应和锂硫电池等电催化系统中表现出色。该技术为将固体废物升级转化为用于环境和能源催化的高性能材料提供了一种通用、可扩展且高效的策略。