Hillmann Timo, Berent Lucas, Quintavalle Armanda O, Eisert Jens, Wille Robert, Roffe Joschka
Chalmers University of Technology, Gothenburg, Sweden.
Technical University of Munich, Munich, Germany.
Nat Commun. 2025 Sep 2;16(1):8214. doi: 10.1038/s41467-025-63214-7.
Quantum low-density parity-check codes are a promising candidate for fault-tolerant quantum computing with considerably reduced overhead compared to the surface code. However, the lack of a practical decoding algorithm remains a barrier to their implementation. In this work, we introduce localized statistics decoding, a reliability-guided inversion decoder that is highly parallelizable and applicable to arbitrary quantum low-density parity-check codes. Our approach employs a parallel matrix factorization strategy, which we call on-the-fly elimination, to identify, validate, and solve local decoding regions on the decoding graph. Through numerical simulations, we show that localized statistics decoding matches the performance of state-of-the-art decoders while reducing the runtime complexity for operation in the sub-threshold regime. Importantly, our decoder is more amenable to implementation on specialized hardware, positioning it as a promising candidate for decoding real-time syndromes from experiments.
量子低密度奇偶校验码是容错量子计算的一个有前途的候选方案,与表面码相比,其开销大大降低。然而,缺乏实用的解码算法仍然是其实现的一个障碍。在这项工作中,我们引入了局部统计解码,这是一种可靠性引导的反转解码器,具有高度可并行性,适用于任意量子低密度奇偶校验码。我们的方法采用了一种并行矩阵分解策略,我们称之为实时消除,以识别、验证和解码图上的局部解码区域。通过数值模拟,我们表明局部统计解码在降低亚阈值区域操作的运行时复杂度的同时,与现有解码器的性能相匹配。重要的是,我们的解码器更适合在专用硬件上实现,使其成为从实验中解码实时综合征的有前途的候选方案。