Suppr超能文献

基于横向门的逻辑算法相关解码

Correlated Decoding of Logical Algorithms with Transversal Gates.

作者信息

Cain Madelyn, Zhao Chen, Zhou Hengyun, Meister Nadine, Ataides J Pablo Bonilla, Jaffe Arthur, Bluvstein Dolev, Lukin Mikhail D

机构信息

Department of Physics, <a href="https://ror.org/03vek6s52">Harvard University</a>, Cambridge, Massachusetts 02138, USA.

<a href="https://ror.org/01njdjw78">QuEra Computing Inc.</a>, Boston, Massachusetts 02135, USA.

出版信息

Phys Rev Lett. 2024 Dec 13;133(24):240602. doi: 10.1103/PhysRevLett.133.240602.

Abstract

Quantum error correction is believed to be essential for scalable quantum computation, but its implementation is challenging due to its considerable space-time overhead. Motivated by recent experiments demonstrating efficient manipulation of logical qubits using transversal gates [Bluvstein et al., Nature (London) 626, 58 (2024)NATUAS0028-083610.1038/s41586-023-06927-3], we show that the performance of logical algorithms can be substantially improved by decoding the qubits jointly to account for error propagation during transversal entangling gates. We find that such correlated decoding improves the performance of both Clifford and non-Clifford transversal entangling gates, and explore two decoders offering different computational runtimes and accuracies. In particular, by leveraging the deterministic propagation of stabilizer measurement errors, we find that correlated decoding enables the number of noisy syndrome extraction rounds between gates to be reduced from O(d) to O(1) in transversal Clifford circuits, where d is the code distance. We verify numerically that this approach substantially reduces the space-time cost of deep logical Clifford circuits. These results demonstrate that correlated decoding provides a major advantage in early fault-tolerant computation, as realized in recent experiments, and further indicate it has considerable potential to reduce the space-time cost in large-scale logical algorithms.

摘要

量子纠错被认为是可扩展量子计算的关键,但由于其巨大的时空开销,其实现具有挑战性。受近期利用横向门有效操纵逻辑量子比特的实验[布卢夫斯坦等人,《自然》(伦敦)626, 58 (2024)NATUAS0028 - 083610.1038/s41586 - 023 - 06927 - 3]的启发,我们表明,通过联合解码量子比特以考虑横向纠缠门期间的错误传播,可以显著提高逻辑算法的性能。我们发现这种相关解码提高了克利福德和非克利福德横向纠缠门的性能,并探索了两种提供不同计算运行时间和精度的解码器。特别是,通过利用稳定器测量误差的确定性传播,我们发现在横向克利福德电路中,相关解码可使门之间有噪声的校验子提取轮数从O(d)减少到O(1),其中d是码距。我们通过数值验证了这种方法大大降低了深度逻辑克利福德电路的时空成本。这些结果表明,相关解码在早期容错计算中提供了一个主要优势,正如近期实验所实现的那样,并且进一步表明它在降低大规模逻辑算法的时空成本方面具有相当大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验