Kaur Bobbinpreet, Gupta Shashi Kant, Janarthan Midhunchakkaravarthy, Alsekait Deema Mohammed, AbdElminaam Diaa Salama
Lincoln University College, Petaling Jaya-47301, Selangor, Malaysia.
Centre for Research Impact & Outcome Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
Sci Rep. 2025 Sep 2;15(1):32296. doi: 10.1038/s41598-025-16923-4.
Citrus fruits, especially lemons, play a vital economic and nutritional role worldwide but are increasingly threatened by a wide range of diseases that diminish yield quality and quantity. Traditional manual and automated methods for disease detection requires domain expert, ample observation time, and is often ineffective during early infection stages. This paper presents a novel automated approach for the symptom based detection and classification of citrus leaf diseases using a nonlinear Fuzzy Rank-Based Ensemble (NL-FuRBE) methodology, enhanced by image quality improvement techniques. The study emphasizes the significance of timely disease diagnosis in citrus crops, which are vital for global food security and economic stability. The methodology begins with image quality enhancement through Vector-Valued Anisotropic Diffusion (VAD) and morphological filtering, evaluated using PSNR, SSIM, and NIQE metrics to ensure optimal visual clarity for classifier input. The core ensemble integrates three deep learning (DL) architectures-VGG19, AlexNet, and Xception-using a fuzzy rank-based scoring mechanism built on nonlinear transformations (exponential, tanh, and sigmoid functions) to address prediction uncertainty and model bias. A comprehensive dataset of lemon leaf diseases, consisting of 1354 images across nine classes, was utilized for training and evaluation. Experimental results using five-fold cross-validation demonstrate that the proposed model achieves superior performance with an average accuracy of 96.51%, outperforming conventional ensemble and state-of-the-art approaches. The results validate the proposed NL-FuRBE as an effective, automated, and cost-efficient tool for precision agriculture and early disease diagnosis in citrus farming.
柑橘类水果,尤其是柠檬,在全球范围内发挥着至关重要的经济和营养作用,但它们正日益受到多种疾病的威胁,这些疾病会降低产量和品质。传统的疾病检测手动和自动化方法需要领域专家、充足的观察时间,并且在早期感染阶段往往效果不佳。本文提出了一种新颖的自动化方法,用于基于症状的柑橘叶部病害检测和分类,该方法采用了非线性基于模糊秩的集成(NL-FuRBE)方法,并通过图像质量改进技术进行了增强。该研究强调了柑橘作物及时疾病诊断的重要性,这对全球粮食安全和经济稳定至关重要。该方法首先通过矢量值各向异性扩散(VAD)和形态学滤波进行图像质量增强,并使用PSNR、SSIM和NIQE指标进行评估,以确保分类器输入具有最佳视觉清晰度。核心集成通过基于非线性变换(指数、双曲正切和Sigmoid函数)构建的基于模糊秩的评分机制,整合了三种深度学习(DL)架构——VGG19、AlexNet和Xception,以解决预测不确定性和模型偏差问题。一个包含九个类别的1354张图像的柠檬叶病害综合数据集被用于训练和评估。使用五折交叉验证的实验结果表明,所提出的模型实现了卓越的性能,平均准确率为96.51%,优于传统集成方法和现有技术方法。结果验证了所提出的NL-FuRBE是一种用于精准农业和柑橘种植早期疾病诊断的有效、自动化且经济高效的工具。