视觉Transformer网络通过可解释的风险评分发现胰腺癌病理切片的预后价值。
Vision transformer network discovers the prognostic value of pancreatic cancer pathology sections via interpretable risk scores.
作者信息
Peng Zhiyong, Zhang Yue, Zhou Tianchi, Shi Wenjie, Wang Ya, Pech Maciej, Rose Georg, Dölling Maximilian, Hippe Katrin, Croner Roland S, Zhu Yi, Kahlert Ulf D
机构信息
School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin, China.
Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular- and Transplantation Surgery, Medical Faculty and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany.
出版信息
Discov Oncol. 2025 Sep 3;16(1):1679. doi: 10.1007/s12672-025-03547-3.
Pathological sections hold rich diagnostic information, yet their prognostic potential is underutilized. This study leverages deep learning to predict outcomes, advancing precision oncology of pathological sections with focus on pancreatic cancer. We analyzed H&E-stained whole section images of 125 cases from public databases as well as 28 real-world patients with pancreatic cancer and precancerous lesions. After image preprocessing, we identified and selected representative patches for subsequent analysis. We develop a modified visual transformer (ViT) model with spatial attention and fine-tuned on ImageNet2012, which was subsequently used to predict the survival times of the corresponding patients and to calculate risk scores. The modified ViT model demonstrated strong predictive accuracy for patient prognosis, with C-indices of 0.79 and 0.82 for Overall Survival (OS) and Disease Free Survival (DFS) in the test set and 0.62 in the validation set. Risk scores correlated well with patient survival, showing clustering between 0.17 and 0.95, aligning with a median survival of 24 months. Higher risk scores were associated with worse clinical prognosis, including shorter survival times and increased tumor recurrence risk, validated across all datasets. The model's AUCs for OS and DFS prediction reached 0.847/0.849 in the training set and 0.813/0.834 in the test set, confirming its high accuracy and potential for clinical application in risk stratification and prognosis prediction. ViT network can discover the prognostic value of pancreatic cancer pathology sections via interpretable risk scores, providing a new insight for prognosis evaluation as well as opens new technology building on existing clinical diagnostics.
病理切片蕴含着丰富的诊断信息,但其预后潜力尚未得到充分利用。本研究利用深度学习来预测结果,推进以胰腺癌为重点的病理切片精准肿瘤学。我们分析了来自公共数据库的125例病例以及28例患有胰腺癌和癌前病变的真实患者的苏木精-伊红(H&E)染色全切片图像。经过图像预处理后,我们识别并选择了代表性切片用于后续分析。我们开发了一种具有空间注意力的改进视觉Transformer(ViT)模型,并在ImageNet2012上进行了微调,随后用于预测相应患者的生存时间并计算风险评分。改进的ViT模型对患者预后表现出强大的预测准确性,在测试集中总生存期(OS)和无病生存期(DFS)的C指数分别为0.79和0.82,在验证集中为0.62。风险评分与患者生存密切相关,聚类范围在0.17至0.95之间,与24个月的中位生存期一致。较高的风险评分与较差的临床预后相关,包括较短的生存时间和增加的肿瘤复发风险,在所有数据集中均得到验证。该模型在训练集中OS和DFS预测的AUC分别达到0.847/0.849,在测试集中为0.813/0.834,证实了其在风险分层和预后预测方面的高准确性及临床应用潜力。ViT网络可以通过可解释的风险评分发现胰腺癌病理切片的预后价值,为预后评估提供了新的见解,并在现有临床诊断基础上开辟了新技术。
相似文献
Clin Orthop Relat Res. 2024-9-1
Health Technol Assess. 2006-9
本文引用的文献
J Immunother Cancer. 2022-9
Med Oncol. 2022-6-15
Nat Rev Gastroenterol Hepatol. 2021-7
CA Cancer J Clin. 2021-1
Lancet. 2020-6-27