Suppr超能文献

基于非增强 CT 和深度学习的大规模胰腺癌检测。

Large-scale pancreatic cancer detection via non-contrast CT and deep learning.

机构信息

Department of Radiology, Shanghai Institution of Pancreatic Disease, Shanghai, China.

DAMO Academy, Alibaba Group, New York, NY, USA.

出版信息

Nat Med. 2023 Dec;29(12):3033-3043. doi: 10.1038/s41591-023-02640-w. Epub 2023 Nov 20.

Abstract

Pancreatic ductal adenocarcinoma (PDAC), the most deadly solid malignancy, is typically detected late and at an inoperable stage. Early or incidental detection is associated with prolonged survival, but screening asymptomatic individuals for PDAC using a single test remains unfeasible due to the low prevalence and potential harms of false positives. Non-contrast computed tomography (CT), routinely performed for clinical indications, offers the potential for large-scale screening, however, identification of PDAC using non-contrast CT has long been considered impossible. Here, we develop a deep learning approach, pancreatic cancer detection with artificial intelligence (PANDA), that can detect and classify pancreatic lesions with high accuracy via non-contrast CT. PANDA is trained on a dataset of 3,208 patients from a single center. PANDA achieves an area under the receiver operating characteristic curve (AUC) of 0.986-0.996 for lesion detection in a multicenter validation involving 6,239 patients across 10 centers, outperforms the mean radiologist performance by 34.1% in sensitivity and 6.3% in specificity for PDAC identification, and achieves a sensitivity of 92.9% and specificity of 99.9% for lesion detection in a real-world multi-scenario validation consisting of 20,530 consecutive patients. Notably, PANDA utilized with non-contrast CT shows non-inferiority to radiology reports (using contrast-enhanced CT) in the differentiation of common pancreatic lesion subtypes. PANDA could potentially serve as a new tool for large-scale pancreatic cancer screening.

摘要

胰腺导管腺癌(PDAC)是最致命的实体恶性肿瘤,通常发现较晚且处于不可手术阶段。早期或偶然发现与延长生存时间相关,但由于患病率低和假阳性的潜在危害,使用单一检测方法对无症状个体进行 PDAC 筛查仍然不可行。非对比计算机断层扫描(CT),常规用于临床指征,具有大规模筛查的潜力,然而,长期以来,使用非对比 CT 识别 PDAC 被认为是不可能的。在这里,我们开发了一种深度学习方法,即人工智能胰腺癌症检测(PANDA),它可以通过非对比 CT 以高精度检测和分类胰腺病变。PANDA 是在一个来自单个中心的 3208 名患者的数据集上进行训练的。PANDA 在涉及 10 个中心的 6239 名患者的多中心验证中,在病变检测方面的受试者工作特征曲线(ROC)下面积(AUC)为 0.986-0.996,在敏感性方面比平均放射科医生的表现高出 34.1%,在特异性方面高出 6.3%,在由 20530 名连续患者组成的真实世界多场景验证中,检测病变的敏感性为 92.9%,特异性为 99.9%。值得注意的是,在常见胰腺病变亚型的鉴别中,使用非对比 CT 的 PANDA 显示出与放射学报告(使用对比增强 CT)的非劣效性。PANDA 有可能成为大规模胰腺癌筛查的新工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca8c/10719100/f5aaf3f116d6/41591_2023_2640_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验