Jiang Jianmei, Xiao Yaoming, Yang Wenjing, Wen Chao, Liu Biye, Wang Lidan, Xu Yunpeng, Zhang Xue, Zhuang Qixin, Lin Jinguo, Su Zisheng, Lin Jeng-Yu
College of Chemical Engineering and Material, Quanzhou Normal University, Quanzhou 362000, China.
College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
ACS Appl Mater Interfaces. 2025 Sep 17;17(37):52779-52788. doi: 10.1021/acsami.5c15451. Epub 2025 Sep 3.
Although the efficiency of perovskite solar cells (PSCs) keeps breaking new records, their stability and cost are still limited by using the conventional hole transport material of 2,2',7,7'-tetrakis(,-di--methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD). Herein, we use 3,4-ethylenedioxythiophene (EDOT) as a solubilizer to enhance the dissolution of lithium bis(trifluoromethane)sulfonylimide (Li-TFSI) and reduce the 4--bultypyridine (TBP) dosage. Then, EDOT undergoes in situ oxidative polymerization to generate PEDOT by an oxidizing agent of iodine (I). Moreover, I can also accelerate the oxidation of Spiro-OMeTAD. Therefore, the generated PEDOT can synergistically enhance hole transport capability with the oxidized Spiro-OMeTAD, and the generated I ions can compensate for the I vacancies and inhibit the migration of I in the perovskite film, resulting in an enhanced stability and efficiency of PSCs. A PSC based on the composite hole transport system achieves a power conversion efficiency (PCE) of 24.79%. Moreover, the PSC retains 92% of its initial PCE for over 2000 h under ambient conditions of 25 °C and 35% relative humidity. Furthermore, the quantities of Spiro-OMeTAD and TBP have, respectively, decreased by 24.9 and 37.5% in the composite hole transport system, thereby lowering the production cost of the PSC and facilitating its industrialization development.
尽管钙钛矿太阳能电池(PSC)的效率不断刷新纪录,但其稳定性和成本仍受限于使用传统的空穴传输材料2,2',7,7'-四(-二-甲氧基苯胺)-9,9'-螺二芴(Spiro-OMeTAD)。在此,我们使用3,4-亚乙基二氧噻吩(EDOT)作为增溶剂来提高双(三氟甲烷)磺酰亚胺锂(Li-TFSI)的溶解度并减少4-叔丁基吡啶(TBP)的用量。然后,EDOT通过碘(I)氧化剂进行原位氧化聚合生成聚3,4-乙撑二氧噻吩(PEDOT)。此外,I还可以加速Spiro-OMeTAD的氧化。因此,生成的PEDOT可以与氧化后的Spiro-OMeTAD协同增强空穴传输能力,并且生成的I离子可以补偿碘空位并抑制碘在钙钛矿薄膜中的迁移,从而提高PSC的稳定性和效率。基于复合空穴传输系统的PSC实现了24.79%的功率转换效率(PCE)。此外,该PSC在25°C和35%相对湿度的环境条件下超过2000小时仍保留其初始PCE的92%。此外,在复合空穴传输系统中,Spiro-OMeTAD和TBP的用量分别减少了24.9%和37.5%,从而降低了PSC的生产成本并促进了其工业化发展。