Suppr超能文献

并七苯的最低激发态是暗态。

The Lowest Excited State of Heptacenes Is Dark.

作者信息

Schöntag Johannes, Frech Philipp, Zwettler Kathrin, Fardan Navid, Somani Ankit, Leis Wolfgang, Ströbele Markus, Seitz Michael, Scheele Marcus, Bettinger Holger F

机构信息

Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.

Institut für Physikalische und Theoretische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.

出版信息

J Phys Chem Lett. 2025 Sep 11;16(36):9479-9487. doi: 10.1021/acs.jpclett.5c01314. Epub 2025 Sep 3.

Abstract

Understanding the electronic structure of polycyclic aromatic compounds is of fundamental importance for their potential applications. The optoelectronic properties of shorter acenes such as tetracene and pentacene have been extensively studied with regard to excitation, emission, and nonlinear effects such as singlet fission. The longer homologues present a unique challenge due to their low stability both in the solid state and in solution. In this work, we synthesized persistent 6,8,15,17-tetrakis((triisopropylsilyl)ethynyl)heptacene and investigated its photophysical properties as well as those of the parent heptacene. Our steady-state electronic absorption and emission experiments combined with transient absorption spectroscopy show that the Franck-Condon electric-dipole-forbidden ("dark") transition to the 2A singlet state is the lowest-energy excited state of heptacene. This contrasts with the optical properties of the well-known shorter acenes. Transient absorption data further suggest singlet fission or intersystem crossing as potential pathways to rapid population of the triplet state facilitated by the dark singlet state.

摘要

了解多环芳烃的电子结构对于其潜在应用至关重要。诸如并四苯和并五苯等较短并苯的光电特性已在激发、发射以及诸如单线态裂变等非线性效应方面得到广泛研究。较长的同系物由于其在固态和溶液中的稳定性较低而带来了独特的挑战。在这项工作中,我们合成了稳定的6,8,15,17 - 四((三异丙基甲硅烷基)乙炔基)并七苯,并研究了其光物理性质以及母体并七苯的光物理性质。我们的稳态电子吸收和发射实验结合瞬态吸收光谱表明,向2A单线态的弗兰克 - 康登电偶极禁阻(“暗”)跃迁是并七苯的最低能量激发态。这与众所周知的较短并苯的光学性质形成对比。瞬态吸收数据进一步表明单线态裂变或系间窜越可能是由暗单线态促进的三线态快速填充的潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/354a/12434725/d4e5c95cad9e/jz5c01314_0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验