Lenz Mark, Rocci Mirko, Altmann Martin, Gueorguiev Boyko
Klinik für Unfall‑, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Jena, Jena, Deutschland.
Synthes GmbH, Johnson & Johnson MedTech, Zuchwil, Schweiz.
Unfallchirurgie (Heidelb). 2025 Sep 3. doi: 10.1007/s00113-025-01628-0.
Polyaxial screw systems are the state of the art in the field of fracture fixation. In contrast to conventional monoaxial systems, the polyaxial constructs enable variable screw angulation, enhancing the adaptability of plate-screw configurations in different surgical scenarios and different anatomical circumstances. This article provides a comprehensive overview of the functional principles, clinical applications and inherent limitations of polyaxial stability. The conventional monaxial technology restricts screw positioning, potentially compromising fixation in some fracture situations or anatomical regions. In contrast, polyaxial systems enable adapted screw placement, addressing specific requirements arising during surgery. Various locking mechanisms based on friction, deformation, thread forms and engagement techniques, play crucial roles in achieving stability. The article discusses the key currently used technologies, their mechanical characteristics and comparative behavior as the biomechanical interaction between screws and plates is crucial for achieving maximum stability and preventing failure modes that could compromise fracture healing. This article emphasizes that while polyaxial systems offer enhanced fragment-specific screw positioning, their successful application relies on careful surgical technique and an understanding of the mechanics involved. By integrating insights from clinical experiences, biomechanics, and the literature, we aim to raise awareness and support decision-making in fracture management using polyaxial systems. Ultimately, the article advocates a balanced understanding of both the benefits and challenges associated with polyaxial fracture fixation in modern orthopedic trauma surgery.
多轴螺钉系统是骨折固定领域的先进技术。与传统的单轴系统不同,多轴结构能够实现螺钉角度的可变,增强了钢板 - 螺钉配置在不同手术场景和不同解剖情况下的适应性。本文全面概述了多轴稳定性的功能原理、临床应用及固有局限性。传统的单轴技术限制了螺钉定位,在某些骨折情况或解剖区域可能会影响固定效果。相比之下,多轴系统能够实现适应性的螺钉放置,满足手术过程中出现的特定需求。基于摩擦、变形、螺纹形式和啮合技术的各种锁定机制,在实现稳定性方面起着关键作用。本文讨论了当前使用的关键技术、它们的力学特性以及比较行为,因为螺钉与钢板之间的生物力学相互作用对于实现最大稳定性和预防可能影响骨折愈合的失效模式至关重要。本文强调,虽然多轴系统提供了增强的针对骨折块的螺钉定位,但它们的成功应用依赖于仔细的手术技术以及对所涉及力学原理的理解。通过整合临床经验、生物力学和文献中的见解,我们旨在提高对使用多轴系统进行骨折治疗的认识并支持决策制定。最终,本文倡导对现代骨科创伤手术中多轴骨折固定的益处和挑战有一个平衡的理解。