Suppr超能文献

2014年至2024年孟德尔随机化在癌症风险因素发现中的应用:文献计量学综述

Application of Mendelian randomization in the discovery of risk factors for cancer from 2014 to 2024: a bibliometric review.

作者信息

Yang Junchi, Wang Dongyan, Han Yixiao, Tan Xinzhe, Du Haibin

机构信息

Heilongjiang University of Chinese Medicine, Harbin, China.

Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Harbin, China.

出版信息

Discov Oncol. 2025 Sep 3;16(1):1683. doi: 10.1007/s12672-025-03515-x.

Abstract

INTRODUCTION

Cancer represents a significant threat to human health, resulting in considerable suffering and placing strain on the medical system. Mendelian randomization (MR) is a cutting-edge technique widely utilized in epidemiological studies, demonstrating distinct advantages in identifying risk factors associated with various diseases. In recent times, there has been considerable interest in MR studies within cancer research. Researchers are increasingly utilizing MR to explore potential risk factors and mechanisms related to cancer, which enables researchers to evaluate the causal relationship between genetic variation and cancer risk more accurately, serving as a crucial foundation for cancer prevention and treatment.

METHODS

This study conducted a bibliometric analysis of MR research in cancer, documented in the Science Network (WOS) Index from 2014 to 2024. By systematically retrieving and summarizing relevant literature, the analysis covered data points such as countries, institutions, authors, journals, publications, keywords, exposures and outcomes.

RESULTS

The study included 1211 articles written by 5810 scholars affiliated with 1254 organizations in 66 nations, published in 302 journals. China, UK, USA and Australia emerged as the leading countries involved. The key affiliations included the University of Bristol, Karolinska Institute, Sichuan University and Zhejiang University. Prominent journals include ‘Frontiers in Oncology’, ‘Frontiers in Genetics’, ‘International Journal of Cancer’ and ‘Scientific Reports’. The keyword analysis indicated that obesity was the most frequently cited exposure factor in cancer-related MR literature, followed by body mass index, inflammation and smoking. Breast cancer was the most common outcome factor, followed by colorectal cancer, prostate cancer and lung cancer.

CONCLUSION

More and more attention has been paid to the research of MR in tumors, revealing a variety of potential risk factors. However, some risk factors found by MR analysis (such as obesity on lung cancer subtypes) also have contradictory effects, highlighting the complexity of the specific causal relationship between exposure factors and cancer. Future research needs to focus on three directions: integrating cross-omics data (such as epigenetics, single cell analysis) to analyze the mechanism of tumor microenvironment; we use longitudinal MR and Bayesian model to optimize the robustness of causal inference. Strengthen cross-ethnic verification and GWAS data construction of rare cancers, and promote the transformation of MR findings into precise prevention strategies.

摘要

引言

癌症对人类健康构成重大威胁,导致巨大痛苦并给医疗系统带来压力。孟德尔随机化(MR)是流行病学研究中广泛应用的前沿技术,在识别与各种疾病相关的风险因素方面具有显著优势。近年来,癌症研究领域对MR研究兴趣浓厚。研究人员越来越多地利用MR来探索与癌症相关的潜在风险因素和机制,这使研究人员能够更准确地评估基因变异与癌症风险之间的因果关系,为癌症预防和治疗奠定了关键基础。

方法

本研究对2014年至2024年科学网(WOS)索引中记录的癌症MR研究进行了文献计量分析。通过系统检索和总结相关文献,分析涵盖了国家、机构、作者、期刊、出版物、关键词、暴露因素和结果等数据点。

结果

该研究包括66个国家1254个组织的5810名学者撰写的1211篇文章,发表在302种期刊上。中国、英国、美国和澳大利亚是主要参与国家。主要机构包括布里斯托大学、卡罗琳斯卡学院、四川大学和浙江大学。著名期刊包括《肿瘤学前沿》《遗传学前沿》《国际癌症杂志》和《科学报告》。关键词分析表明,肥胖是癌症相关MR文献中最常被提及的暴露因素,其次是体重指数、炎症和吸烟。乳腺癌是最常见的结果因素,其次是结直肠癌、前列腺癌和肺癌。

结论

肿瘤领域对MR研究的关注度越来越高,揭示了多种潜在风险因素。然而,MR分析发现的一些风险因素(如肥胖对肺癌亚型的影响)也存在矛盾效应,凸显了暴露因素与癌症之间具体因果关系的复杂性。未来研究需要聚焦三个方向:整合跨组学数据(如表观遗传学、单细胞分析)以分析肿瘤微环境机制;采用纵向MR和贝叶斯模型优化因果推断的稳健性。加强罕见癌症的跨种族验证和GWAS数据构建,推动MR研究结果转化为精准预防策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c56/12408435/6cf6ad1a075d/12672_2025_3515_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验