Suppr超能文献

揭开IgG4的面纱:探索其与克罗恩病的相互作用——从免疫学见解到机器学习

IgG4 unveiled: navigating the interplay with Crohn's disease - from immunology insights to machine learning.

作者信息

Mohan Anmol, Ghaffar Urooj, Basharat Ahmad, Nawaz Gul, Khenhrani Raja Ram, Vera Guillermo de Jesus Aguirre, Lal Priyanka Mohan, Tanush Dev, Khan Muhammad Khuzzaim, Duseja Nikhil, Sherazi Syeda Laiba, Kumar Vikash, Nanavaty Dhairya

机构信息

Karachi Medical and Dental College, Karachi, Pakistan.

Calderdale and Huddersfield NHS Foundation Trust, United Kingdom.

出版信息

Ann Med Surg (Lond). 2025 Jul 24;87(9):5798-5806. doi: 10.1097/MS9.0000000000003633. eCollection 2025 Sep.

Abstract

Crohn's disease (CD) is a chronic inflammatory bowel disease characterized by relapsing-remitting episodes and a progressive course that often leads to bowel damage and disability. While the etiology of CD is multifactorial, involving genetic, environmental, and immunological factors, recent studies have highlighted the role of food antigens and the gut microbiome in its pathogenesis. This paper explores the immunological underpinnings of CD, with a focus on the elevated levels of serum immunoglobulin G4 (IgG4) and their correlation with disease severity and therapeutic response. We review clinical trials and case studies that demonstrate the potential of IgG4-guided exclusion diets and intravenous immunoglobulin (IVIG) therapy in ameliorating CD symptoms and inflammation. Additionally, we delve into advancements in machine learning (ML) models that utilize fecal microbiome data, offering promising diagnostic tools for distinguishing CD from ulcerative colitis and non-IBD conditions. The integration of ML in endoscopy and predictive models for therapy complications signifies a leap toward precision medicine in IBD management. This paper underscores the necessity for a nuanced understanding of CD's immunological aspects and the innovative application of ML in its diagnosis and treatment, paving the way for personalized therapeutic strategies and improved patient outcomes.

摘要

克罗恩病(CD)是一种慢性炎症性肠病,其特征为病情复发缓解发作且病程呈进行性发展,常导致肠道损伤和功能障碍。虽然CD的病因是多因素的,涉及遗传、环境和免疫因素,但最近的研究强调了食物抗原和肠道微生物群在其发病机制中的作用。本文探讨了CD的免疫学基础,重点关注血清免疫球蛋白G4(IgG4)水平升高及其与疾病严重程度和治疗反应的相关性。我们回顾了临床试验和病例研究,这些研究证明了IgG4指导的排除饮食和静脉注射免疫球蛋白(IVIG)疗法在改善CD症状和炎症方面的潜力。此外,我们深入研究了利用粪便微生物群数据的机器学习(ML)模型的进展,这些模型为区分CD与溃疡性结肠炎和非炎症性肠病(IBD)状况提供了有前景的诊断工具。ML在内镜检查中的应用以及治疗并发症预测模型标志着IBD管理向精准医学迈出了一大步。本文强调了细致了解CD免疫学方面以及ML在其诊断和治疗中的创新应用的必要性,为个性化治疗策略和改善患者预后铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7443/12401333/36bf85a72140/ms9-87-5798-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验