Suppr超能文献

一种混合蛋白-氧纳米药物通过抑制HIF-1α/VEGF/EGFR克服非小细胞肺癌中的奥希替尼耐药性。

A Hybrid Protein-Oxygen Nanomedicine Overcomes Osimertinib Resistance in NSCLC via HIF-1α/VEGF/EGFR Inhibition.

作者信息

Jiang Guanming, Liu Xuyi, Zhang Dou, Diao Zhenying, Yang Xiaojun, Tan Qinquan, Chen Shiyuan, Zhang Wan, Yin Xiumao, Yin Ting, Wang Xiaozhen, Zhou Jianping

机构信息

Department of Oncology, Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, People's Republic of China.

Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China.

出版信息

Int J Nanomedicine. 2025 Aug 27;20:10389-10405. doi: 10.2147/IJN.S531571. eCollection 2025.

Abstract

PURPOSE

Osimertinib, established as the frontline treatment for advanced non-small cell lung cancer (NSCLC), can effectively prolong progression-free survival. However, it faces the problem of reduced treatment persistence due to acquired drug resistance. Meanwhile, tumor hypoxia is also a key driver of drug resistance. This study proposes a hybrid protein oxygen nanocarrier combined with osimertinib and ginsenoside Rg3 to address the drug resistance issue of NSCLC through multiple mechanisms.

METHODS

A hybrid protein-oxygen multifunctional nanoplatform (OG@HPO) was engineered by co-encapsulating OSI and GRg3 within oxygen-rich protein matrices. Initial confirmed the synthesis of OG@HPO and characterized its drug/oxygen release. Subsequent in vitro assays verified OG@HPO's tumoricidal activity and elucidated its mechanistic. Finally, in vivo evaluations validated the nanoplatform's tumor targeting and anticancer efficacy.

RESULTS

Preliminary experiments confirmed successful OG@HPO preparation and validated its drug/oxygen release capacities. In vitro assays demonstrated the potent cytotoxic effects of OG@HPO against H1975 OR cells. In vivo biodistribution studies revealed excellent tumor-targeting of OG@HPO in H1975 OR xenograft mice. Subsequent 18 days therapeutic monitoring showed superior antitumor efficacy accompanied and favorable biosafety profile of OG@HPO. More importantly, in vitro and in vivo studies demonstrated that OG@HPO effectively oxygenate tumor microenvironment, thereby inhibiting hypoxia-driven HIF-1α expression and simultaneously inhibiting the vascular endothelial growth factor (VEGF)/EGFR pathway.

CONCLUSION

OG@HPO represents an innovative multifunctional nanoplatform integrating tumor-targeting, multi-drug delivery, and hypoxia modulation capabilities. By effectively alleviating tumor hypoxia, it achieves multiple inhibition of HIF-1α and EGFR/VEGF pathways. Ultimately, enhances NSCLC sensitivity to osimertinib, thereby reversing acquired resistance. Overall, OG@HPO is regarded as a promising strategy to overcome osimertinib resistance providing a clinically translatable solution.

摘要

目的

奥希替尼已被确立为晚期非小细胞肺癌(NSCLC)的一线治疗药物,可有效延长无进展生存期。然而,由于获得性耐药,它面临治疗持续性降低的问题。同时,肿瘤缺氧也是耐药的关键驱动因素。本研究提出一种结合奥希替尼和人参皂苷Rg3的混合蛋白质氧纳米载体,通过多种机制解决NSCLC的耐药问题。

方法

通过将奥希替尼(OSI)和人参皂苷Rg3(GRg3)共包封在富氧蛋白质基质中,构建了一种混合蛋白质-氧多功能纳米平台(OG@HPO)。首先确认OG@HPO的合成并表征其药物/氧气释放情况。随后的体外实验验证了OG@HPO的杀瘤活性并阐明其作用机制。最后,体内评估验证了该纳米平台的肿瘤靶向性和抗癌疗效。

结果

初步实验证实成功制备了OG@HPO并验证了其药物/氧气释放能力。体外实验表明OG@HPO对H1975 OR细胞具有强大的细胞毒性作用。体内生物分布研究显示OG@HPO在H1975 OR异种移植小鼠中具有出色的肿瘤靶向性。随后18天的治疗监测显示OG@HPO具有卓越的抗肿瘤疗效以及良好的生物安全性。更重要的是,体外和体内研究表明OG@HPO能有效使肿瘤微环境氧合,从而抑制缺氧驱动的HIF-1α表达,同时抑制血管内皮生长因子(VEGF)/表皮生长因子受体(EGFR)通路。

结论

OG@HPO是一种创新的多功能纳米平台,具有肿瘤靶向、多药递送和缺氧调节能力。通过有效缓解肿瘤缺氧,它实现了对HIF-1α和EGFR/VEGF通路的多重抑制。最终,增强了NSCLC对奥希替尼的敏感性,从而逆转获得性耐药。总体而言,OG@HPO被认为是克服奥希替尼耐药的一种有前景的策略,提供了一种可临床转化的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc8f/12400113/09fd12b4b5a1/IJN-20-10389-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验