Suppr超能文献

基于LASSO的ICU患者意外低体温预测模型的开发与验证

Development and validation of a LASSO-based predictive model for inadvertent hypothermia in ICU patients.

作者信息

Wang Xueting, Chen Yuxuan, Hua Lan, Wang Dongmei, Zhang Xia, Wang Lianhong

机构信息

Department of Critical Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.

Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China.

出版信息

Front Med (Lausanne). 2025 Aug 18;12:1596030. doi: 10.3389/fmed.2025.1596030. eCollection 2025.

Abstract

OBJECTIVE

To develop a risk predictive model for inadvertent hypothermia (IH) in intensive care unit (ICU) patients and to validate the accuracy of the model.

METHODS

The data was collected at the ICU of a tertiary hospital in Zunyi from November 2022 to June 2023 for model construction and internal validation. Data collected at the ICU of another tertiary hospital in Zunyi from July 2023 to December 2023 was used for external validation. The Least Absolute Shrinkage and Selection Operator (LASSO) was used to screen for strongly correlated predictors and build a predictive model, which was presented in the form of a nomogram and perform internal and external validation.

RESULTS

This study included a total of 720 participants, the incidence of IH in ICU patients was 18.19%. Six predictor variables were ultimately screened to construct the model: risk of IH in ICU patients = 1/(1 + exp-(-3.631 + 0.984 × catecholamines - 3.200 × antipyretic analgesics + 1.611 × RRT + 1.291 × invasive mechanical ventilation + 1.160 × GCS + 0.096 × lactate)). The results of the prediction model evaluation showed an AUC of 0.852 (95%: 0.805, 0.898) and internal validation yielded a C-statistic of 0.851. The Hosmer-Lemeshow test showed that  = 7.438,  = 0.282 and the calibration curve showed that the actual prediction was close to the ideal prediction. The results of the DCA showed that the model is able to provide effective evidence to support clinical decision making. External validation showed an AUC of 0.846 (95%: 0.779, 0.913). The Hosmer-Lemeshow test showed  = 13.041,  = 0.071 and the calibration curve was close to the ideal prediction situation.

CONCLUSION

The IH predictive model for ICU patients constructed in this study passed both internal and external validation, and has good differentiation, calibration, clinical utility, and generalizability, which can help healthcare professionals to effectively identify high-risk groups for IH in the ICU.

摘要

目的

建立重症监护病房(ICU)患者意外低体温(IH)的风险预测模型,并验证该模型的准确性。

方法

收集2022年11月至2023年6月遵义某三级医院ICU的数据用于模型构建和内部验证。收集2023年7月至2023年12月遵义另一家三级医院ICU的数据用于外部验证。采用最小绝对收缩和选择算子(LASSO)筛选强相关预测因子并建立预测模型,以列线图形式呈现并进行内部和外部验证。

结果

本研究共纳入720名参与者,ICU患者中IH的发生率为18.19%。最终筛选出6个预测变量构建模型:ICU患者发生IH的风险=1/(1 + exp-(-3.631 + 0.984×儿茶酚胺 - 3.200×解热镇痛药 + 1.611×肾脏替代治疗(RRT)+ 1.291×有创机械通气 + 1.160×格拉斯哥昏迷量表(GCS)+ 0.096×乳酸))。预测模型评估结果显示曲线下面积(AUC)为0.852(95%:0.805,0.898),内部验证的C统计量为0.851。Hosmer-Lemeshow检验显示χ² = 7.438,P = 0.282,校准曲线显示实际预测接近理想预测。决策曲线分析(DCA)结果表明该模型能够为临床决策提供有效依据。外部验证显示AUC为0.846(95%:0.779,0.913)。Hosmer-Lemeshow检验显示χ² = 13.041,P = 0.071,校准曲线接近理想预测情况。

结论

本研究构建的ICU患者IH预测模型通过了内部和外部验证,具有良好的区分度、校准度、临床实用性和可推广性,有助于医护人员有效识别ICU中IH的高危人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab8/12399657/8c0eb95536c3/fmed-12-1596030-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验