Liang Longwei, Shi Hui, Wang Zhaoyuan, Wang Shengjie, Li Changhong, Diao Ming
College of Agriculture, Shihezi University, Shihezi, China.
Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
Front Plant Sci. 2025 Aug 18;16:1652478. doi: 10.3389/fpls.2025.1652478. eCollection 2025.
Existing facility environment prediction models often suffer from low accuracy, poor timeliness, and error accumulation in long-term predictions under multifactor nonlinear coupling conditions. These limitations significantly constrain the effectiveness of precise environmental regulation in agricultural facilities.
To address these challenges, this paper proposes a novel facility environment prediction model (LSTM-AT-DP) integrating Long Short-Term Memory networks with attention mechanisms and advanced data preprocessing. The model architecture employs: (1) a Data Preprocessing (DP) module combining Wavelet Threshold Denoising (WTD) for noise elimination and Sliding Window (SW) technique for feature matrix construction; (2) an LSTM core for deep temporal modeling; and (3) an Attention Mechanism (AT) for dynamic feature weighting to enhance critical temporal feature extraction.
In 24-hour prediction tests, the model achieved determination coefficients (R²) of 0.9602 (temperature), 0.9529 (humidity), and 0.9839 (radiation), representing improvements of 3.89%, 5.53%, and 2.84% respectively over baseline LSTM models. Corresponding RMSE reductions were 0.6830, 1.8759, and 12.952 for these parameters.
The results demonstrate that the LSTM-AT-DP model significantly enhances prediction accuracy while effectively suppressing error accumulation in long-term forecasts. This advancement provides robust technical support for precise facility environment regulation, with particular improvements observed in humidity prediction. The integrated attention mechanism proves particularly effective in identifying and weighting critical temporal features across all measured environmental parameters.
现有的设施环境预测模型在多因素非线性耦合条件下,往往存在精度低、时效性差以及长期预测中误差累积等问题。这些局限性严重制约了农业设施精确环境调控的有效性。
为应对这些挑战,本文提出了一种新型的设施环境预测模型(LSTM - AT - DP),该模型将长短期记忆网络与注意力机制以及先进的数据预处理相结合。模型架构采用:(1)数据预处理(DP)模块,结合用于噪声消除的小波阈值去噪(WTD)和用于特征矩阵构建的滑动窗口(SW)技术;(2)用于深度时间建模的LSTM核心;(3)用于动态特征加权以增强关键时间特征提取的注意力机制(AT)。
在24小时预测测试中,该模型的决定系数(R²)分别为温度0.9602、湿度0.9529和辐射0.9839,相对于基线LSTM模型分别提高了3.89%、5.53%和2.84%。这些参数对应的RMSE降低分别为0.6830、1.8759和12.952。
结果表明,LSTM - AT - DP模型显著提高了预测精度,同时有效抑制了长期预测中的误差累积。这一进展为精确的设施环境调控提供了强大的技术支持,在湿度预测方面有特别明显的改进。集成的注意力机制在识别和加权所有测量环境参数中的关键时间特征方面被证明特别有效。