Suppr超能文献

一种用于新能源汽车嵌入式内饰系统中人工智能驱动情感优化的Transformer-LSTM-SVR混合模型。

A Transformer-LSTM-SVR hybrid model for AI-driven emotional optimization in NEV embedded interior systems.

作者信息

Liu Zongming, Chen Xuhui, Liang Xinan, Sun Zhicheng, Yang Fengqi, Ou Wenwen, Li Linwei, Qin Xiayan

机构信息

School of Design and Art, Shaanxi University of Science and Technology, Weiyang University Park, Xi'an, 710016, Shaanxi Province, China.

School of Packaging Design and Art, Hunan University of Technology, Tianxin District, Zhuzhou, 412007, Hunan Province, China.

出版信息

Sci Rep. 2025 Aug 18;15(1):30236. doi: 10.1038/s41598-025-15808-w.

Abstract

With the rapid expansion of the new energy vehicle (NEV) market, a shift from function-oriented toward emotion-oriented interior design has emerged as a key factor in enhancing user experience and brand differentiation. Current research on emotion optimization in new energy vehicle interiors lacks efficient nonlinear modeling methods. To address this gap, a hybrid Transformer-LSTM-SVR model is proposed, which significantly enhances emotion prediction accuracy by integrating attention mechanisms and temporal modeling. This model addresses the complex nonlinear relationship between users' emotional satisfaction and interior design attributes. Furthermore, interpretability analysis reveals key design feature differences among user groups. The proposed method combines a Transformer module, which captures higher-order interactions among multidimensional design parameters (e.g., sentiment evaluation coefficients and task completion time), and a Long Short-Term Memory (LSTM) network, configured to enhance time-series feature capture through adjustments to hidden unit count and sequence length. Potential representations from both modules are combined into high-dimensional vectors via a feature fusion mechanism and subsequently fed into a Support Vector Regression (SVR) module for fitting nonlinear relationships. This hierarchical architecture effectively mitigates the limitations of traditional SVR in modeling dynamic time series and nonlinear relationships, while enhancing model robustness through the synergy between global context-awareness and time-series dependency. Performance comparisons against benchmark models-including traditional SVR, particle swarm optimization (PSO)-tuned SVR, PSO-tuned random forest (RF), Backpropagation Neural Network (BPNN), and Gradient Boosting Regression (GBR)-demonstrate that the proposed model significantly outperforms these baselines, improving prediction accuracy by 12.7% to 23.4%. Compared to traditional KE methods, the synergistic integration of the LSTM's temporal attention mechanism and the Transformer's global context modeling improves system robustness against noisy user feedback data by 18.9%. Results indicate that the model significantly enhances the prediction accuracy of users' emotional needs, offering a viable approach for emotion-oriented and sustainable interior design in new energy vehicles. This study provides practical tools for designers, thereby enhancing the market competitiveness of new energy vehicles and promoting sustainable development.

摘要

随着新能源汽车(NEV)市场的迅速扩张,从功能导向型向情感导向型的内饰设计转变已成为提升用户体验和品牌差异化的关键因素。当前关于新能源汽车内饰情感优化的研究缺乏高效的非线性建模方法。为了填补这一空白,提出了一种混合Transformer-LSTM-SVR模型,该模型通过整合注意力机制和时间建模显著提高了情感预测准确性。该模型解决了用户情感满意度与内饰设计属性之间复杂的非线性关系。此外,可解释性分析揭示了用户群体之间关键设计特征的差异。所提出的方法结合了一个Transformer模块,该模块捕获多维设计参数(如情感评估系数和任务完成时间)之间的高阶交互,以及一个长短期记忆(LSTM)网络,该网络通过调整隐藏单元数量和序列长度来增强时间序列特征捕获。两个模块的潜在表示通过特征融合机制组合成高维向量,随后输入到支持向量回归(SVR)模块中以拟合非线性关系。这种分层架构有效地减轻了传统SVR在动态时间序列建模和非线性关系建模方面的局限性,同时通过全局上下文感知和时间序列依赖性之间的协同作用提高了模型的鲁棒性。与基准模型(包括传统SVR、粒子群优化(PSO)调优的SVR、PSO调优的随机森林(RF)、反向传播神经网络(BPNN)和梯度提升回归(GBR))的性能比较表明,所提出的模型显著优于这些基线,预测准确率提高了12.7%至23.4%。与传统的KE方法相比,LSTM的时间注意力机制和Transformer的全局上下文建模的协同集成将系统对嘈杂用户反馈数据的鲁棒性提高了18.9%。结果表明,该模型显著提高了用户情感需求的预测准确性,为新能源汽车面向情感和可持续的内饰设计提供了一种可行的方法。本研究为设计师提供了实用工具,从而提高了新能源汽车的市场竞争力并促进了可持续发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/12361410/13605f7cdb1e/41598_2025_15808_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验