文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Echo-ODE: A dynamics modeling network with neural ODE for temporally consistent segmentation of video echocardiograms.

作者信息

Lu Wenliang, Wang Yuan, Dai Wenli, Wu Yingnan, Xu Hao, Kong Dexing

机构信息

School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.

Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.

出版信息

Front Physiol. 2025 Aug 18;16:1629121. doi: 10.3389/fphys.2025.1629121. eCollection 2025.


DOI:10.3389/fphys.2025.1629121
PMID:40901613
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12399644/
Abstract

INTRODUCTION: Segmentation of echocardiograms plays a crucial role in clinical diagnosis. Beyond accuracy, a major challenge of video echocardiogram analysis is the temporal consistency of consecutive frames. Stable and consistent segmentation of cardiac structures is essential for a reliable fully automatic echocardiogram interpretation. METHODS: We propose a novel framework Echo-ODE, where the heart is regarded as a dynamical system, and we model the representation of dynamics by neural ordinary differential equations. Echo-ODE learns the spatio-temporal relationships of the input video and output continuous and consistent predictions. RESULTS: Experiments conducted on the Echo-Dynamic, the CAMUS and our private dataset demonstrate that Echo-ODE achieves comparable accuracy but significantly better temporal stability and consistency in video segmentation than previous mainstream CNN models. More accurate phase detection and robustness to arrhythmia also underscore the superiority of our proposed model. DISCUSSION: Echo-ODE addresses the critical need for temporal coherence in clinical video analysis. This framework establishes a versatile backbone extendable beyond segmentation tasks. Its ability to model cardiac dynamics demonstrates great potential for enabling reliable, fully automated video echocardiogram interpretation. The code is publicly available at https://github.com/luwenlianglu/EchoODE.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ff/12399644/6b257789eb9e/fphys-16-1629121-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ff/12399644/1df9c82b3c15/fphys-16-1629121-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ff/12399644/c216b4c2201f/fphys-16-1629121-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ff/12399644/00eeee3e804e/fphys-16-1629121-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ff/12399644/ea9e40f7f2cc/fphys-16-1629121-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ff/12399644/35de74447dce/fphys-16-1629121-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ff/12399644/6b257789eb9e/fphys-16-1629121-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ff/12399644/1df9c82b3c15/fphys-16-1629121-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ff/12399644/c216b4c2201f/fphys-16-1629121-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ff/12399644/00eeee3e804e/fphys-16-1629121-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ff/12399644/ea9e40f7f2cc/fphys-16-1629121-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ff/12399644/35de74447dce/fphys-16-1629121-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ff/12399644/6b257789eb9e/fphys-16-1629121-g006.jpg

相似文献

[1]
Echo-ODE: A dynamics modeling network with neural ODE for temporally consistent segmentation of video echocardiograms.

Front Physiol. 2025-8-18

[2]
An ODE based neural network approach for PM2.5 forecasting.

Sci Rep. 2025-7-10

[3]
Echo Flow-Induced Temporal Correlation Learning for Ultrasound Video Object Segmentation.

IEEE Trans Biomed Eng. 2025-8-12

[4]
A temporal convolutional network-based approach and a benchmark dataset for colonoscopy video temporal segmentation.

Comput Methods Programs Biomed. 2025-10

[5]
Enhancing cardiac function assessment: Developing and validating a domain adaptive framework for automating the segmentation of echocardiogram videos.

Comput Med Imaging Graph. 2025-9

[6]
A multiscale multicellular spatiotemporal model of local influenza infection and immune response.

J Theor Biol. 2022-1-7

[7]
Kinematic Adaptive Frame Recognition (KAFR): A Novel Framework for Video Segmentation via Frame Similarity and Surgical Tool Tracking.

IEEE Access. 2025

[8]
A segment anything model-guided and match-based semi-supervised segmentation framework for medical imaging.

Med Phys. 2025-3-29

[9]
Integrated neural network framework for multi-object detection and recognition using UAV imagery.

Front Neurorobot. 2025-7-30

[10]
Short-Term Memory Impairment

2025-1

本文引用的文献

[1]
BEAS-Net: A Shape-Prior-Based Deep Convolutional Neural Network for Robust Left Ventricular Segmentation in 2-D Echocardiography.

IEEE Trans Ultrason Ferroelectr Freq Control. 2024-11

[2]
Multi-Task Learning for Motion Analysis and Segmentation in 3D Echocardiography.

IEEE Trans Med Imaging. 2024-5

[3]
JANet: A joint attention network for balancing accuracy and speed in left ventricular ultrasound video segmentation.

Comput Biol Med. 2024-2

[4]
MAEF-Net: Multi-attention efficient feature fusion network for left ventricular segmentation and quantitative analysis in two-dimensional echocardiography.

Ultrasonics. 2023-1

[5]
CortexODE: Learning Cortical Surface Reconstruction by Neural ODEs.

IEEE Trans Med Imaging. 2023-2

[6]
Semi-supervised segmentation of echocardiography videos via noise-resilient spatiotemporal semantic calibration and fusion.

Med Image Anal. 2022-5

[7]
High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning.

JAMA Cardiol. 2022-4-1

[8]
Multibeat echocardiographic phase detection using deep neural networks.

Comput Biol Med. 2021-6

[9]
Dual attention enhancement feature fusion network for segmentation and quantitative analysis of paediatric echocardiography.

Med Image Anal. 2021-7

[10]
Deep pyramid local attention neural network for cardiac structure segmentation in two-dimensional echocardiography.

Med Image Anal. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索