Lu Wenliang, Wang Yuan, Dai Wenli, Wu Yingnan, Xu Hao, Kong Dexing
School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
Front Physiol. 2025 Aug 18;16:1629121. doi: 10.3389/fphys.2025.1629121. eCollection 2025.
Segmentation of echocardiograms plays a crucial role in clinical diagnosis. Beyond accuracy, a major challenge of video echocardiogram analysis is the temporal consistency of consecutive frames. Stable and consistent segmentation of cardiac structures is essential for a reliable fully automatic echocardiogram interpretation.
We propose a novel framework Echo-ODE, where the heart is regarded as a dynamical system, and we model the representation of dynamics by neural ordinary differential equations. Echo-ODE learns the spatio-temporal relationships of the input video and output continuous and consistent predictions.
Experiments conducted on the Echo-Dynamic, the CAMUS and our private dataset demonstrate that Echo-ODE achieves comparable accuracy but significantly better temporal stability and consistency in video segmentation than previous mainstream CNN models. More accurate phase detection and robustness to arrhythmia also underscore the superiority of our proposed model.
Echo-ODE addresses the critical need for temporal coherence in clinical video analysis. This framework establishes a versatile backbone extendable beyond segmentation tasks. Its ability to model cardiac dynamics demonstrates great potential for enabling reliable, fully automated video echocardiogram interpretation. The code is publicly available at https://github.com/luwenlianglu/EchoODE.
超声心动图的分割在临床诊断中起着至关重要的作用。除了准确性之外,视频超声心动图分析的一个主要挑战是连续帧的时间一致性。心脏结构的稳定且一致的分割对于可靠的全自动超声心动图解释至关重要。
我们提出了一种新颖的框架Echo - ODE,其中将心脏视为一个动态系统,并通过神经常微分方程对动力学表示进行建模。Echo - ODE学习输入视频的时空关系并输出连续且一致的预测。
在Echo - Dynamic、CAMUS和我们的私人数据集上进行的实验表明,与之前的主流CNN模型相比,Echo - ODE在视频分割中实现了相当的准确性,但在时间稳定性和一致性方面明显更好。更准确的相位检测和对心律失常的鲁棒性也突出了我们提出的模型的优越性。
Echo - ODE满足了临床视频分析中对时间连贯性的迫切需求。该框架建立了一个可扩展到分割任务之外的通用主干。其对心脏动力学建模的能力显示出在实现可靠的全自动视频超声心动图解释方面的巨大潜力。代码可在https://github.com/luwenlianglu/EchoODE上公开获取。