文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

局部流感感染和免疫反应的多尺度多细胞时空模型。

A multiscale multicellular spatiotemporal model of local influenza infection and immune response.

机构信息

Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.

Department of Analytical, Physical, and Social Sciences, Carlow University, Pittsburgh, PA, USA.

出版信息

J Theor Biol. 2022 Jan 7;532:110918. doi: 10.1016/j.jtbi.2021.110918. Epub 2021 Sep 27.


DOI:10.1016/j.jtbi.2021.110918
PMID:34592264
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8478073/
Abstract

Respiratory viral infections pose a serious public health concern, from mild seasonal influenza to pandemics like those of SARS-CoV-2. Spatiotemporal dynamics of viral infection impact nearly all aspects of the progression of a viral infection, like the dependence of viral replication rates on the type of cell and pathogen, the strength of the immune response and localization of infection. Mathematical modeling is often used to describe respiratory viral infections and the immune response to them using ordinary differential equation (ODE) models. However, ODE models neglect spatially-resolved biophysical mechanisms like lesion shape and the details of viral transport, and so cannot model spatial effects of a viral infection and immune response. In this work, we develop a multiscale, multicellular spatiotemporal model of influenza infection and immune response by combining non-spatial ODE modeling and spatial, cell-based modeling. We employ cellularization, a recently developed method for generating spatial, cell-based, stochastic models from non-spatial ODE models, to generate much of our model from a calibrated ODE model that describes infection, death and recovery of susceptible cells and innate and adaptive responses during influenza infection, and develop models of cell migration and other mechanisms not explicitly described by the ODE model. We determine new model parameters to generate agreement between the spatial and original ODE models under certain conditions, where simulation replicas using our model serve as microconfigurations of the ODE model, and compare results between the models to investigate the nature of viral exposure and impact of heterogeneous infection on the time-evolution of the viral infection. We found that using spatially homogeneous initial exposure conditions consistently with those employed during calibration of the ODE model generates far less severe infection, and that local exposure to virus must be multiple orders of magnitude greater than a uniformly applied exposure to all available susceptible cells. This strongly suggests a prominent role of localization of exposure in influenza A infection. We propose that the particularities of the microenvironment to which a virus is introduced plays a dominant role in disease onset and progression, and that spatially resolved models like ours may be important to better understand and more reliably predict future health states based on susceptibility of potential lesion sites using spatially resolved patient data of the state of an infection. We can readily integrate the immune response components of our model into other modeling and simulation frameworks of viral infection dynamics that do detailed modeling of other mechanisms like viral internalization and intracellular viral replication dynamics, which are not explicitly represented in the ODE model. We can also combine our model with available experimental data and modeling of exposure scenarios and spatiotemporal aspects of mechanisms like mucociliary clearance that are only implicitly described by the ODE model, which would significantly improve the ability of our model to present spatially resolved predictions about the progression of influenza infection and immune response.

摘要

呼吸道病毒感染是一个严重的公共卫生问题,包括轻度季节性流感和 SARS-CoV-2 等大流行。病毒感染的时空动态几乎影响病毒感染进展的各个方面,例如病毒复制率对细胞和病原体类型的依赖性、免疫反应的强度以及感染的定位。数学模型通常用于使用常微分方程 (ODE) 模型来描述呼吸道病毒感染和对它们的免疫反应。然而,ODE 模型忽略了空间分辨的生物物理机制,例如病变形状和病毒运输的细节,因此无法模拟病毒感染和免疫反应的空间效应。在这项工作中,我们通过结合非空间 ODE 建模和基于细胞的空间建模来开发流感感染和免疫反应的多尺度、多细胞时空模型。我们采用细胞化(cellularization),这是一种最近开发的从非空间 ODE 模型生成空间、基于细胞的随机模型的方法,从描述感染、易感细胞的死亡和恢复以及固有和适应性反应的已校准 ODE 模型生成我们模型的大部分内容在流感感染期间,以及开发细胞迁移和 ODE 模型未明确描述的其他机制的模型。我们确定了新的模型参数,以在某些条件下在空间和原始 ODE 模型之间生成一致性,其中使用我们的模型的模拟副本作为 ODE 模型的微配置,并且比较模型之间的结果以研究病毒暴露的性质和异质感染对病毒感染的时间演化的影响。我们发现,使用与 ODE 模型校准期间使用的空间均匀初始暴露条件一致的条件会产生较轻的感染,并且局部暴露于病毒的程度必须比均匀应用于所有可用的易感细胞的暴露程度高出多个数量级。这强烈表明暴露的本地化在甲型流感感染中起着重要作用。我们提出,病毒引入的微环境的特殊性在疾病发作和进展中起着主导作用,并且像我们这样的空间分辨模型可能对于基于潜在病变部位的易感性使用基于感染状态的患者的空间分辨数据更好地理解和更可靠地预测未来的健康状态很重要。我们可以轻松地将我们模型的免疫反应组件集成到其他病毒感染动力学建模和模拟框架中,这些框架对病毒内化和细胞内病毒复制动力学等其他机制进行详细建模,而这些机制在 ODE 模型中并未明确表示。我们还可以将我们的模型与现有的暴露场景实验数据和建模以及对黏液纤毛清除等机制的时空方面进行组合,这些方面仅在 ODE 模型中隐含描述,这将显著提高我们的模型预测流感感染和免疫反应进展的空间分辨能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/4eb66ea58a4b/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/d73ebcb799df/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/9fd68dc551be/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/ac6212a3270e/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/9e4b23c9dfa9/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/b8699ecb3b2c/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/919131ebb0b7/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/4eb66ea58a4b/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/d73ebcb799df/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/9fd68dc551be/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/ac6212a3270e/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/9e4b23c9dfa9/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/b8699ecb3b2c/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/919131ebb0b7/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb71/8478073/4eb66ea58a4b/gr7_lrg.jpg

相似文献

[1]
A multiscale multicellular spatiotemporal model of local influenza infection and immune response.

J Theor Biol. 2022-1-7

[2]
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2022-7-22

[3]
Physical interventions to interrupt or reduce the spread of respiratory viruses.

Cochrane Database Syst Rev. 2023-1-30

[4]
A New Measure of Quantified Social Health Is Associated With Levels of Discomfort, Capability, and Mental and General Health Among Patients Seeking Musculoskeletal Specialty Care.

Clin Orthop Relat Res. 2025-4-1

[5]
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2024-12-16

[6]
Antibody tests for identification of current and past infection with SARS-CoV-2.

Cochrane Database Syst Rev. 2022-11-17

[7]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[8]
Sexual Harassment and Prevention Training

2025-1

[9]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[10]
Measures implemented in the school setting to contain the COVID-19 pandemic.

Cochrane Database Syst Rev. 2022-1-17

引用本文的文献

[1]
Towards early diagnosis of Alzheimer's disease: advances in immune-related blood biomarkers and computational approaches.

Front Immunol. 2024

[2]
SimService: a lightweight library for building simulation services in Python.

Bioinformatics. 2024-1-2

[3]
Mathematical Modeling of the Lethal Synergism of Coinfecting Pathogens in Respiratory Viral Infections: A Review.

Microorganisms. 2023-12-13

[4]
Antagonism between viral infection and innate immunity at the single-cell level.

PLoS Pathog. 2023-9

[5]
Building digital twins of the human immune system: toward a roadmap.

NPJ Digit Med. 2022-5-20

[6]
Multiscale Model of Antiviral Timing, Potency, and Heterogeneity Effects on an Epithelial Tissue Patch Infected by SARS-CoV-2.

Viruses. 2022-3-14

[7]
Advancing therapies for viral infections using mechanistic computational models of the dynamic interplay between the virus and host immune response.

Curr Opin Virol. 2021-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索