Suppr超能文献

昼夜节律周期中的突变驱动蓝细菌的适应性可塑性。

Mutations in the circadian cycle drive adaptive plasticity in cyanobacteria.

作者信息

Mendaña Alfonso, Santos-Merino María, Gutiérrez-Lanza Raquel, Domínguez-Quintero Marina, Medina-Méndez Juan Manuel, González-Guerra Ana, Campa Víctor, Baez Miguel, Ducos-Galand Magaly, López-Igual Rocío, Volke Daniel C, Gugger Muriel, Nikel Pablo I, Mazel Didier, de la Cruz Fernando, Fernández-López Raúl

机构信息

Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Cantabria 39011, Spain.

Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris 75015, France.

出版信息

Proc Natl Acad Sci U S A. 2025 Sep 9;122(36):e2506928122. doi: 10.1073/pnas.2506928122. Epub 2025 Sep 3.

Abstract

Circadian clocks allow organisms to anticipate daily fluctuations in light and temperature, but how this anticipatory role promotes adaptation to different environments remains poorly understood. Here, we subjected the cyanobacterium PCC 7942 to a long-term evolution experiment under high light, high temperature, and elevated CO levels. After 1,200 generations, we obtained a strain exhibiting a 600% increase in growth rate. Whole-genome sequencing revealed three mutations fixed in the evolved population, two of which were sufficient to recapitulate the fast-growing phenotype in the wild type. A mutation in the promoter of the shikimate kinase led to its overexpression, while a mutation in the central circadian regulator disrupted both the phase and amplitude of the circadian rhythm. Changes in circadian control led to widespread perturbations in the transcriptome and metabolome. These included major shifts in the Calvin-Benson-Bassham cycle and glycogen storage dynamics. While these changes increased fitness under the experimental conditions, they caused maladaptation when light or CO levels were altered, revealing a trade-off between fitness and environmental flexibility. Our results demonstrate that mutations in circadian control can drive fast adaptation by modulating central metabolism, underscoring the circadian cycle as a cornerstone of cellular plasticity. Thus, targeting the circadian cycle could be key to engineering cyanobacterial strains optimized for carbon fixation and biomass production.

摘要

生物钟使生物体能够预测光照和温度的每日波动,但这种预测作用如何促进对不同环境的适应仍知之甚少。在这里,我们让蓝藻PCC 7942在高光、高温和高二氧化碳水平下进行长期进化实验。经过1200代后,我们获得了一个生长速率提高600%的菌株。全基因组测序揭示了在进化群体中固定的三个突变,其中两个足以在野生型中重现快速生长表型。莽草酸激酶启动子中的一个突变导致其过表达,而中央生物钟调节因子中的一个突变破坏了昼夜节律的相位和振幅。昼夜节律控制的变化导致转录组和代谢组广泛紊乱。这些变化包括卡尔文-本森-巴斯姆循环和糖原储存动态的重大转变。虽然这些变化在实验条件下提高了适应性,但当光照或二氧化碳水平改变时,它们会导致适应不良,揭示了适应性和环境灵活性之间的权衡。我们的结果表明,昼夜节律控制中的突变可以通过调节中心代谢来驱动快速适应,强调了昼夜节律周期是细胞可塑性的基石。因此,针对昼夜节律周期可能是工程改造用于碳固定和生物量生产的优化蓝藻菌株的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be95/12435244/51e007a713bc/pnas.2506928122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验