Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain.
School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
ISME J. 2022 Oct;16(10):2421-2432. doi: 10.1038/s41396-022-01282-z. Epub 2022 Jul 18.
RuBisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase) is one the most abundant enzymes on Earth. Virtually all food webs depend on its activity to supply fixed carbon. In aerobic environments, RuBisCO struggles to distinguish efficiently between CO and O. To compensate, organisms have evolved convergent solutions to concentrate CO around the active site. The genetic engineering of such inorganic carbon concentrating mechanisms (CCMs) into plants could help facilitate future global food security for humankind. In bacteria, the carboxysome represents one such CCM component, of which two independent forms exist: α and β. Cyanobacteria are important players in the planet's carbon cycle and the vast majority of the phylum possess a β-carboxysome, including most cyanobacteria used as laboratory models. The exceptions are the exclusively marine Prochlorococcus and Synechococcus that numerically dominate open ocean systems. However, the reason why marine systems favor an α-form is currently unknown. Here, we report the genomes of 58 cyanobacteria, closely related to marine Synechococcus that were isolated from freshwater lakes across the globe. We find all these isolates possess α-carboxysomes accompanied by a form 1A RuBisCO. Moreover, we demonstrate α-cyanobacteria dominate freshwater lakes worldwide. Hence, the paradigm of a separation in carboxysome type across the salinity divide does not hold true, and instead the α-form dominates all aquatic systems. We thus question the relevance of β-cyanobacteria as models for aquatic systems at large and pose a hypothesis for the reason for the success of the α-form in nature.
核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)是地球上最丰富的酶之一。几乎所有的食物网都依赖它的活性来提供固定碳。在有氧环境中,RuBisCO 很难有效地将 CO 和 O 区分开来。为了弥补这一点,生物已经进化出了趋同的解决方案,将 CO 集中在活性部位周围。将这种无机碳浓缩机制(CCM)的基因工程引入植物中,可以帮助人类实现未来的全球粮食安全。在细菌中,羧化体代表了一种这样的 CCM 成分,其中存在两种独立的形式:α和β。蓝细菌是地球碳循环的重要参与者,绝大多数门都拥有β羧化体,包括大多数用作实验室模型的蓝细菌。例外的是仅在海洋中存在的聚球藻属和鱼腥藻属,它们在开阔海洋系统中占据数量优势。然而,海洋系统偏爱α形式的原因目前尚不清楚。在这里,我们报告了 58 株蓝细菌的基因组,这些蓝细菌与海洋聚球藻属密切相关,是从全球各地的淡水湖中分离出来的。我们发现所有这些分离株都拥有α羧化体和形式 1A RuBisCO。此外,我们证明α-蓝细菌在全球淡水湖中占据主导地位。因此,羧化体类型在盐度分界面上分离的范例并不成立,相反,α 形式主导着所有水生系统。因此,我们质疑β-蓝细菌作为水生系统模型的相关性,并提出了一个关于α-形式在自然界中成功的原因的假设。