Suppr超能文献

表面重塑促进脂质A结合纳米抗体的抗菌活性。

Resurfacing promotes antibacterial activity of a lipid A-binding nanobody.

作者信息

O'Donnell Angela C, Wang Xun, Kadeřábková Nikol, Groover Kyra E, Perez Bethany C, Helms Amanda, Brodbelt Jennifer S, Mavridou Despoina A I, Davies Bryan W

机构信息

Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712.

Department of Chemistry, The University of Texas at Austin, Austin, TX 78712.

出版信息

Proc Natl Acad Sci U S A. 2025 Sep 9;122(36):e2509305122. doi: 10.1073/pnas.2509305122. Epub 2025 Sep 3.

Abstract

Nanobodies have been pursued as candidates for antimicrobial design due to their small size and versatile binding capacities, but direct antibacterial activity of a nanobody has yet to be described. Here, we employed a bacterial surface display platform to screen a synthetic library of nanobody variants for antimicrobial potential. We identified a candidate that binds the essential lipid A component of gram-negative lipopolysaccharide. Nonetheless, this nanobody required a weakened outer membrane to access its target and elicit its toxic activity. Borrowing from observations of innate immune proteins, we found that resurfacing nanobodies with positively charged residues enabled them to bind and perturb the gram-negative outer membrane, but this alone was not sufficient for toxic activity. However, when we resurface our lipid A-targeting nanobody, it gained the ability to disrupt the outer membrane and enact its antibacterial function against wild-type bacteria. This development of a dual-function nanobody that can reach and bind previously inaccessible gram-negative targets introduces a route for antimicrobial biologic advancement.

摘要

由于纳米抗体体积小且具有多种结合能力,它们一直被作为抗菌设计的候选物进行研究,但纳米抗体的直接抗菌活性尚未见报道。在此,我们利用细菌表面展示平台筛选纳米抗体变体的合成文库,以寻找其抗菌潜力。我们鉴定出一种能够结合革兰氏阴性菌脂多糖中关键脂质A成分的候选纳米抗体。尽管如此,这种纳米抗体需要削弱外膜才能接近其靶标并发挥其毒性活性。借鉴天然免疫蛋白的观察结果,我们发现用带正电荷的残基修饰纳米抗体能够使其结合并扰乱革兰氏阴性菌的外膜,但仅此一点不足以产生毒性活性。然而,当我们修饰靶向脂质A的纳米抗体时,它获得了破坏外膜并对野生型细菌发挥抗菌功能的能力。这种能够到达并结合以前无法接近的革兰氏阴性菌靶标的双功能纳米抗体的开发为抗菌生物制剂的发展开辟了一条道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6ed/12435215/e82a268f682b/pnas.2509305122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验