Suppr超能文献

使用R-R间期对患者精神分裂症和双相情感障碍进行自动评估的深度学习方法。

Deep learning approach for automatic assessment of schizophrenia and bipolar disorder in patients using R-R intervals.

作者信息

Książek Kamil, Masarczyk Wilhelm, Głomb Przemysław, Romaszewski Michał, Buza Krisztián, Sekuła Przemysław, Cholewa Michał, Kołodziej Katarzyna, Gorczyca Piotr, Piegza Magdalena

机构信息

Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland.

Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Tarnowskie Góry, Poland.

出版信息

PLoS Comput Biol. 2025 Sep 3;21(9):e1012983. doi: 10.1371/journal.pcbi.1012983. eCollection 2025 Sep.

Abstract

Schizophrenia and bipolar disorder are severe mental illnesses that significantly impact quality of life. These disorders are associated with autonomic nervous system dysfunction, which can be assessed through heart activity analysis. Heart rate variability (HRV) has shown promise as a potential biomarker for diagnostic support and early screening of those conditions. This study aims to develop and evaluate an automated classification method for schizophrenia and bipolar disorder using short-duration electrocardiogram (ECG) signals recorded with a low-cost wearable device. We conducted classification experiments using machine learning techniques to analyze R-R interval windows extracted from short ECG recordings. The study included 60 participants-30 individuals diagnosed with schizophrenia or bipolar disorder and 30 control subjects. We evaluated multiple machine learning models, including Support Vector Machines, XGBoost, multilayer perceptrons, Gated Recurrent Units, and ensemble methods. Two time window lengths (about 1 and 5 minutes) were evaluated. Performance was assessed using 5-fold cross-validation and leave-one-out cross-validation, with hyperparameter optimization and patient-level classification based on individual window decisions. Our method achieved classification accuracy of 83% for the 5-fold cross-validation and 80% for the leave-one-out scenario. Despite the complexity of our scenario, which mirrors real-world clinical settings, the proposed approach yielded performance comparable to advanced diagnostic methods reported in the literature. The results highlight the potential of short-duration HRV analysis as a cost-effective and accessible tool for aiding in the diagnosis of schizophrenia and bipolar disorder. Our findings support the feasibility of using wearable ECG devices and machine learning-based classification for psychiatric screening, paving the way for further research and clinical applications.

摘要

精神分裂症和双相情感障碍是严重的精神疾病,会对生活质量产生重大影响。这些疾病与自主神经系统功能障碍有关,可通过心脏活动分析进行评估。心率变异性(HRV)已显示出作为这些疾病诊断支持和早期筛查潜在生物标志物的前景。本研究旨在开发和评估一种使用低成本可穿戴设备记录的短程心电图(ECG)信号对精神分裂症和双相情感障碍进行自动分类的方法。我们使用机器学习技术进行分类实验,以分析从短程ECG记录中提取的R-R间期窗口。该研究包括60名参与者——30名被诊断为精神分裂症或双相情感障碍的个体以及30名对照受试者。我们评估了多种机器学习模型,包括支持向量机、XGBoost、多层感知器、门控循环单元和集成方法。评估了两种时间窗口长度(约1分钟和5分钟)。使用5折交叉验证和留一法交叉验证评估性能,并基于个体窗口决策进行超参数优化和患者水平分类。我们的方法在5折交叉验证中的分类准确率为83%,在留一法情况下为80%。尽管我们的场景复杂,反映了现实世界的临床环境,但所提出的方法产生的性能与文献中报道的先进诊断方法相当。结果突出了短程HRV分析作为一种经济有效且易于获得的工具辅助精神分裂症和双相情感障碍诊断的潜力。我们的研究结果支持使用可穿戴ECG设备和基于机器学习的分类进行精神科筛查的可行性,为进一步的研究和临床应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d56/12419755/5317b427ee41/pcbi.1012983.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验