Chen Ang, Song Bifeng, Liu Kang, Wang Zhihe, Xue Dong, Qi Hongduo
School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
National Key Laboratory of Aircraft Configuration Design, Xi'an, Shaanxi 710072, China.
Sci Adv. 2025 Sep 5;11(36):eadx0465. doi: 10.1126/sciadv.adx0465. Epub 2025 Sep 3.
Flying vertebrates use specialized wingbeat kinematics in hovering, takeoff, and landing, featuring ventrally anterior downstrokes and aerodynamically inactive upstrokes to enhance aerodynamic characteristics at low airspeeds. Rarely implemented in robotics, this inspired RoboFalcon2.0, a flapping-wing robot with reconfigurable mechanisms performing bioinspired flap-sweep-fold (FSF) motion for controlled bird-style takeoff. FSF couples flapping, sweeping, and folding within a single wingbeat cycle, mimicking vertebrate slow-flight kinematics. Wind tunnel tests demonstrate that sweeping amplitude modulates lift and pitching moment in FSF motion. Computational fluid dynamics simulations reveal that FSF's aerodynamic effects correlate with leading-edge vortex strength and pressure center location. Dynamics simulations analyze pitch control during takeoff. Real-world flights validate RoboFalcon2.0's self-takeoff capability. This work advances avian-inspired robotics through vertebrate-like actuation principles, enabling more biomimetic flapping-wing designs.
飞行脊椎动物在悬停、起飞和着陆时使用特殊的振翅运动学,其特点是腹侧向前向下扑动以及空气动力学上不活跃的向上扑动,以在低空速下增强空气动力学特性。这种方式在机器人技术中很少被采用,这启发了RoboFalcon2.0的诞生,它是一种带有可重构机制的扑翼机器人,能够执行受生物启发的拍打-扫掠-折叠(FSF)运动,以实现可控的鸟类式起飞。FSF在单个振翅周期内将拍打、扫掠和折叠结合在一起,模仿脊椎动物的慢速飞行运动学。风洞测试表明,扫掠幅度在FSF运动中调节升力和俯仰力矩。计算流体动力学模拟显示,FSF的空气动力学效应与前缘涡强度和压力中心位置相关。动力学模拟分析了起飞过程中的俯仰控制。实际飞行验证了RoboFalcon2.0的自主起飞能力。这项工作通过类似脊椎动物的驱动原理推动了受鸟类启发的机器人技术发展,实现了更具仿生学的扑翼设计。