Suppr超能文献

向内折叠与向外展开:扑翼中的被动变形

Folding in and out: passive morphing in flapping wings.

作者信息

Stowers Amanda K, Lentink David

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Bioinspir Biomim. 2015 Mar 25;10(2):025001. doi: 10.1088/1748-3190/10/2/025001.

Abstract

We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover within a beat.

摘要

我们提出了一种受蝙蝠和鸟类翅膀形态启发的扑翼被动变形新机制。该机制由一个通过腕关节与臂翼相连的未驱动手翼组成。扑翼运动在手翼中产生离心加速度,迫使其被动展开。利用悬停状态下的机器人模型,我们使用立体高速摄像机对展开运动学进行了运动学测量,测量其作为无量纲翼展折叠比(2 - 2.5)和扑翼频率(5 - 17赫兹)的函数。我们发现翅膀在一到两次扑动内被动展开,并在展开后仅伴有小幅度振荡。为了更好地理解被动动力学,我们基于刚体动力学、接触模型和空气动力学相关性构建了展开过程的计算机模型。该模型预测在大约一次扑动内的测量被动展开情况,并表明展开是由扑动引起的离心加速度驱动的。模拟还预测相对展开时间仅微弱依赖于扑翼频率,并且通过增加扑翼幅度可将其缩短至不到半个翼拍。随后的量纲分析表明,被动展开所需的时间与扑动周期处于同一数量级。这表明离心加速度可在大约一个翼拍内驱动小翅膀和大翅膀的被动展开。最后,我们通过实验表明,被动展开的翅膀在首先折叠然后被动展开时能够承受与树枝的碰撞。这种机制使扑翼机器人能够在无需复杂控制的情况下挤过障碍物。被动展开还为变形翼设计提供了一条新途径,使未来的扑翼变形翼可能更节能且重量更轻。同时,这些结果指出了蝙蝠和鸟类中可能存在的由惯性驱动、因而代谢高效的控制策略,以便在一拍内实现形态变化或恢复。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验