Zhuang Lu, Zhao Yuwei, Qin Qikai, Xiong Kejia, Qian Zhen, Liu Yan
iHuman Institute, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
iHuman Institute, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
Redox Biol. 2025 Aug 27;86:103847. doi: 10.1016/j.redox.2025.103847.
Pancreatic β-cell function requires precise regulation of insulin secretory vesicles (ISVs), yet the redox heterogeneity within mature ISVs remains poorly defined. Here, we implement a novel oxidation-sensing system using NPY-fused DsRed1-E5 (Timer) targeted to mature ISVs in INS-1E and human Endoc-βH5 β-cell models. Leveraging Timer's oxidative color transition from green (Low-oxidative) to yellow-red (High-oxidative), supported by independent measurements using the established redox sensor Grx1-roGFP2, we resolve distinct ISV subpopulations. Strikingly, Krebs-Ringer Bicarbonate HEPES (KRBH) Buffer treatment amplified ISV redox heterogeneity through increasing cytosolic oxidation. Factor screening identified glutamine deprivation as the principal driver of this diversification. Spatial analysis revealed Low-oxidative ISVs predominantly docked peripherally (0-1 μm from plasma membrane), while High-oxidative ISVs localized deeper (>1 μm) and exhibited 1.7-fold higher mobility. TIRF microscopy and volumetric imaging both demonstrated superior glucose-responsive secretion from Low-oxidative ISVs during both first and second phases of glucose-stimulated insulin release. Lysotracker co-localization showed High-oxidative ISVs were preferentially targeted for lysosomal degradation (2.3-fold higher association). These findings establish an oxidation-based taxonomy for mature ISVs, linking redox states to distinct functional fates: secretion-competent Low-oxidative vesicles versus degradation-prone High-oxidative vesicles, redefining ISV heterogeneity as a fundamental organizational principle in β-cell physiology and its dysregulation in metabolic stress.
胰腺β细胞功能需要对胰岛素分泌囊泡(ISV)进行精确调节,然而成熟ISV内的氧化还原异质性仍未得到充分界定。在此,我们在INS-1E和人Endoc-βH5β细胞模型中,利用靶向成熟ISV的NPY融合DsRed1-E5(Timer)构建了一种新型氧化传感系统。借助Timer从绿色(低氧化)到黄红色(高氧化)的氧化颜色转变,并通过使用已建立的氧化还原传感器Grx1-roGFP2进行的独立测量予以支持,我们解析了不同的ISV亚群。令人惊讶的是, Krebs-Ringer碳酸氢盐HEPES(KRBH)缓冲液处理通过增加胞质氧化放大了ISV氧化还原异质性。因子筛选确定谷氨酰胺剥夺是这种多样化的主要驱动因素。空间分析显示,低氧化ISV主要在外周对接(距质膜0-1μm),而高氧化ISV定位更深(>1μm)且迁移率高1.7倍。TIRF显微镜和体积成像均显示,在葡萄糖刺激的胰岛素释放的第一阶段和第二阶段,低氧化ISV具有卓越的葡萄糖反应性分泌。溶酶体追踪剂共定位显示,高氧化ISV优先靶向溶酶体降解(关联度高2.3倍)。这些发现为成熟ISV建立了基于氧化的分类法,将氧化还原状态与不同的功能命运联系起来:具有分泌能力的低氧化囊泡与易于降解的高氧化囊泡,将ISV异质性重新定义为β细胞生理学中的基本组织原则及其在代谢应激中的失调。