König Dirk, Frentzen Michael, Wilck Noël, Hiller Daniel, Di Santo Giovanni, Petaccia Luca, Píš Igor, Bondino Federica, Magnano Elena, Motylenko Mykhaylo, Rafaja David, Smith Sean, Knoch Joachim
Department of Material Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia.
Institute of Semiconductor Electronics (IHT), RWTH Aachen University, 52074 Aachen, Germany.
ACS Appl Mater Interfaces. 2025 Sep 17;17(37):52325-52335. doi: 10.1021/acsami.5c08073. Epub 2025 Sep 3.
Hard entropy limits of impurity doping prevent further miniaturization of low nanoscale silicon-based very large scale integration (VLSI) devices, thereby obstructing the path toward more energy-efficient VLSI designs with higher yield in compute power. As demonstrated here by synchrotron UV photoelectron spectroscopy (UPS) and X-ray absorption spectroscopy in total fluorescence yield mode (XAS-TFY), intrinsic Si at the bottom of the nanoscale (i-nano-Si) turns into strong p- or n-Si by embedding in silicon nitride (SiN) or silicon dioxide (SiO), respectively. The associated Nanoscale Electronic Structure Shift Induced by Anions at Surfaces (NESSIAS) creates a p/n junction in i-nano-Si by the quantum-chemical impact of SiN- vs SiO-coating, providing energy landscapes to accumulate electrons (holes) when SiO- (SiN-) coated, with free charge carriers provided by metallic interconnects. Hybrid density functional theory (h-DFT) calculations demonstrate Si NWire FETs with physical gate lengths down to 3 nm, while the electronic structure remains stable under carrier injection. A mesoscopic band model derived from synchrotron characterization data on ultrathin embedded Si nanowells (NWells), and from h-DFT confirms and further explains the NESSIAS impact to generate p/n homojunctions in i-nano-Si. Presenting a paradigm shift for Si-based VLSI, NESSIAS removes miniaturization limits, achieves faster charge carrier transport with massive reductions of energy demand and associated heat generation as required for ultralow power VLSI, and enables full cryo-functionality for quantum computing.
杂质掺杂的硬熵限制阻碍了低纳米级硅基超大规模集成电路(VLSI)器件的进一步小型化,从而阻塞了通往具有更高计算能力产量且更节能的VLSI设计的道路。正如同步加速器紫外光电子能谱(UPS)和全荧光产率模式下的X射线吸收光谱(XAS-TFY)在此所证明的那样,纳米级底部的本征硅(i-纳米硅)通过分别嵌入氮化硅(SiN)或二氧化硅(SiO)而转变为强p型或n型硅。表面阴离子诱导的相关纳米级电子结构转变(NESSIAS)通过SiN涂层与SiO涂层的量子化学影响在i-纳米硅中创建了一个p/n结,当涂覆SiO(SiN)时提供了积累电子(空穴)的能量态势,由金属互连提供自由电荷载流子。杂化密度泛函理论(h-DFT)计算表明,物理栅长低至3 nm的Si NWire FET,而其电子结构在载流子注入下保持稳定。从超薄嵌入式硅纳米阱(NWells)的同步加速器表征数据以及h-DFT推导得出的介观能带模型证实并进一步解释了NESSIAS在i-纳米硅中产生p/n同质结的影响。NESSIAS为基于硅的VLSI带来了范式转变,消除了小型化限制,实现了更快的电荷载流子传输,大幅降低了超低功耗VLSI所需的能量需求和相关热量产生,并实现了量子计算的全低温功能。