Shang Yue, Hu Xueyin, Ren Meixia, Ma Longbo, Zhao Xiaoyu, Gao Cong, Zhang Lumeng, Li Shuqin, Liu Luntao, Zou Bingwen, Fan Saijun
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
Signal Transduct Target Ther. 2025 Sep 4;10(1):286. doi: 10.1038/s41392-025-02375-9.
Radiation-induced brain injury (RIBI) represents a severe complication of cranial radiotherapy, substantially diminishing patients' quality of life. Unlike conventional brain injuries, RIBI evokes a unique chronic neuroinflammatory response that notably aggravates neurodegenerative processes. Despite significant progress in understanding the molecular mechanisms related to neuroinflammation, the specific and precise mechanisms that regulate neuroinflammation in RIBI and its associated toxicological effects remain largely unclear. Additionally, targeted neuroprotective strategies for RIBI are currently lacking. In this study, we systematically characterized the pathophysiology of RIBI using zebrafish (larvae/adults) and murine models. We established direct associations between neuronal damage and cognitive-behavioral deficits. Mechanistically, we proposed a ROS-mitochondrial-immune axis. Specifically, radiation-induced ROS lead to mitochondrial dysfunction, resulting in the leakage of mitochondrial DNA into the cytosol. This, in turn, activated the cGAS-STING pathway, thereby driving persistent microglia-mediated neuroinflammation. Furthermore, we engineered a dual-function nanotherapeutic agent, Pep-CuO@H151. This agent integrates ultrasmall copper-based nanozymes (CuO) for ROS scavenging and H151 (a STING inhibitor) and is conjugated with peptides that can penetrate the blood-brain barrier and target microglia. This nanoplatform exhibited excellent synergistic therapeutic efficacy by simultaneously neutralizing oxidative stress and blocking inflammatory cascades. Our research provided an in-depth analysis of radiation-induced neurotoxicity, clarifying the crucial ROS-mitochondrial-immune axis. Moreover, we have developed a precise therapeutic strategy on the basis of this mechanism.
放射性脑损伤(RIBI)是颅脑放疗的一种严重并发症,会显著降低患者的生活质量。与传统脑损伤不同,RIBI会引发独特的慢性神经炎症反应,显著加剧神经退行性变过程。尽管在理解与神经炎症相关的分子机制方面取得了重大进展,但调节RIBI中神经炎症及其相关毒理学效应的具体精确机制仍 largely不清楚。此外,目前缺乏针对RIBI的靶向神经保护策略。在本研究中,我们使用斑马鱼(幼虫/成体)和小鼠模型系统地描述了RIBI的病理生理学。我们建立了神经元损伤与认知行为缺陷之间的直接关联。从机制上讲,我们提出了一种ROS-线粒体-免疫轴。具体而言,辐射诱导的ROS导致线粒体功能障碍,导致线粒体DNA泄漏到细胞质中。这反过来又激活了cGAS-STING途径,从而驱动持续的小胶质细胞介导的神经炎症。此外,我们设计了一种双功能纳米治疗剂,Pep-CuO@H151。该制剂整合了用于清除ROS的超小铜基纳米酶(CuO)和H151(一种STING抑制剂),并与可穿透血脑屏障并靶向小胶质细胞的肽缀合。这种纳米平台通过同时中和氧化应激和阻断炎症级联反应,表现出优异的协同治疗效果。我们的研究对辐射诱导的神经毒性进行了深入分析,阐明了关键的ROS-线粒体-免疫轴。此外,我们基于这一机制开发了一种精确的治疗策略。