Shao Jiahui, Yao Guangjie, Wu Xuecheng, Lin Kaifeng, Zhang Shaoyi, Cheng Xu, Zhong Ding, Liu Chang, Liu Can, Wang Fengqiu, Liu Kaihui, Hong Hao
State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China.
Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
Light Sci Appl. 2025 Sep 3;14(1):301. doi: 10.1038/s41377-025-02018-2.
The fiber-based saturable absorber (SA) that enables mode-locking within a ring cavity serves as the core component of the ultrafast all-fiber lasers. However, the integration of SAs onto fibers with high compactness suffers from imbalanced saturable absorption properties and unstable mode-locking performance. Here, we present a robust mode-locking SA by integrating a nanocavity composed of a two-dimensional graphene heterostructure on the fiber end facet. We demonstrate a significant reduction in the saturation intensity (65%) and improved soliton dynamic processes through precise modulation of the optical field within the heterostructure. The designed heterostructure facilitates the formation of a stable single-soliton state for robust mode-locking. A high tolerance to intracavity polarization variations is achieved in the heterostructure-SA (85% compared to 20% for bare graphene). Our designed heterostructure-SA represents an important advancement in the development of ultracompact mode-locked all-fiber lasers, offering enhanced integrability and stability.
基于光纤的可饱和吸收体(SA)是实现环形腔内锁模的核心部件,可用于超快全光纤激光器。然而,将可饱和吸收体高度紧凑地集成到光纤上时,其可饱和吸收特性不均衡,锁模性能不稳定。在此,我们通过在光纤端面上集成由二维石墨烯异质结构组成的纳米腔,提出了一种稳健的锁模可饱和吸收体。我们通过对异质结构内的光场进行精确调制,证明了饱和强度显著降低(约65%),孤子动力学过程得到改善。所设计的异质结构有助于形成稳定的单孤子态,以实现稳健的锁模。异质结构可饱和吸收体对腔内偏振变化具有高耐受性(与裸石墨烯的20%相比,约为85%)。我们设计的异质结构可饱和吸收体代表了超紧凑锁模全光纤激光器发展中的一项重要进展,具有更高的可集成性和稳定性。