Scott Andrew J, Mittal Anjali, Meghdadi Baharan, O'Brien Alexandra, Bailleul Justine, Sravya Palavalasa, Achreja Abhinav, Zhou Weihua, Xu Jie, Lin Angelica, Wilder-Romans Kari, Liang Ningning, Kothari Ayesha U, Korimerla Navyateja, Edwards Donna M, Wu Zhe, Feng Jiane, Su Sophia, Zhang Li, Sajjakulnukit Peter, Andren Anthony C, Park Junyoung O, Ten Hoeve Johanna, Tarnal Vijay, Redic Kimberly A, Qi Nathan R, Fischer Joshua L, Yang Ethan, Regan Michael S, Stopka Sylwia A, Baquer Gerard, Suresh Krithika, Sarkaria Jann N, Lawrence Theodore S, Venneti Sriram, Agar Nathalie Y R, Vlashi Erina, Lyssiotis Costas A, Al-Holou Wajd N, Nagrath Deepak, Wahl Daniel R
Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
Nature. 2025 Sep 3. doi: 10.1038/s41586-025-09460-7.
The brain avidly consumes glucose to fuel neurophysiology. Cancers of the brain, such as glioblastoma, relinquish physiological integrity and gain the ability to proliferate and invade healthy tissue. How brain cancers rewire glucose use to drive aggressive growth remains unclear. Here we infused C-labelled glucose into patients and mice with brain cancer, coupled with quantitative metabolic flux analysis, to map the fates of glucose-derived carbon in tumour versus cortex. Through direct and comprehensive measurements of carbon and nitrogen labelling in both cortex and glioma tissues, we identify profound metabolic transformations. In the human cortex, glucose carbons fuel essential physiological processes, including tricarboxylic acid cycle oxidation and neurotransmitter synthesis. Conversely, gliomas downregulate these processes and scavenge alternative carbon sources such as amino acids from the environment, repurposing glucose-derived carbons to generate molecules needed for proliferation and invasion. Targeting this metabolic rewiring in mice through dietary amino acid modulation selectively alters glioblastoma metabolism, slows tumour growth and augments the efficacy of standard-of-care treatments. These findings illuminate how aggressive brain tumours exploit glucose to suppress normal physiological activity in favour of malignant expansion and offer potential therapeutic strategies to enhance treatment outcomes.
大脑大量消耗葡萄糖以维持神经生理功能。脑癌,如胶质母细胞瘤,会丧失生理完整性,并获得增殖和侵袭健康组织的能力。脑癌如何重新调整葡萄糖利用方式以驱动侵袭性生长仍不清楚。在此,我们将用碳标记的葡萄糖注入患有脑癌的患者和小鼠体内,并结合定量代谢通量分析,以描绘肿瘤与皮层中葡萄糖衍生碳的去向。通过直接和全面测量皮层和胶质瘤组织中的碳和氮标记,我们发现了深刻的代谢转变。在人类皮层中,葡萄糖碳为包括三羧酸循环氧化和神经递质合成在内的基本生理过程提供能量。相反,胶质瘤会下调这些过程,并从环境中摄取替代碳源,如氨基酸,将葡萄糖衍生的碳重新用于生成增殖和侵袭所需的分子。通过饮食氨基酸调节在小鼠中靶向这种代谢重编程,可选择性地改变胶质母细胞瘤的代谢,减缓肿瘤生长,并增强标准治疗的疗效。这些发现阐明了侵袭性脑肿瘤如何利用葡萄糖抑制正常生理活动以利于恶性扩张,并提供了增强治疗效果的潜在治疗策略。