Suppr超能文献

多种冗余的羧酸转运体支持……中的线粒体代谢

MULTIPLE, REDUNDANT CARBOXYLIC ACID TRANSPORTERS SUPPORT MITOCHONDRIAL METABOLISM IN .

作者信息

Rajaram Krithika, Rangel Gabriel W, Munro Justin T, Nair Sethu C, Llinás Manuel, Prigge Sean T

出版信息

bioRxiv. 2024 Nov 27:2024.11.26.624872. doi: 10.1101/2024.11.26.624872.

Abstract

UNLABELLED

The mitochondrion of the deadliest human malaria parasite, is an essential source of cellular acetyl-CoA during the asexual blood-stage of the parasite life cycle. Blocking mitochondrial acetyl-CoA synthesis leads to a hypoacetylated proteome and parasite death. We previously determined that mitochondrial acetyl-CoA is primarily synthesized from glucose-derived pyruvate by α-ketoacid dehydrogenases. Here, we asked if inhibiting the import of glycolytic pyruvate across the mitochondrial inner membrane would affect acetyl-CoA production and, thus, could be a potential target for antimalarial drug development. We selected the two predicted mitochondrial pyruvate carrier proteins ( MPC1 and MPC2) for genetic knockout and isotopic metabolite tracing via HPLC-MS metabolomic analysis. Surprisingly, we observed that asexual blood-stage parasites could survive the loss of either or both MPCs with only minor growth defects, despite a substantial reduction in the amount of glucose-derived isotopic labelling into acetyl-CoA. Furthermore, genetic deletion of two additional mitochondrial carboxylic acid transporters - DTC (di/tricarboxylic acid carrier) and YHM2 (a putative citrate/α-ketoglutarate carrier protein) - only mildly affected asexual blood-stage replication, even in the context of MPC deficiency. Although we observed no added impact on the incorporation of glucose carbon into acetyl-CoA in these quadruple knockout mutants, we noted a large decrease in glutamine-derived label in tricarboxylic acid cycle metabolites, suggesting that DTC and YHM2 both import glutamine derivatives into the mitochondrion. Altogether, our results expose redundant routes used to fuel the blood-stage malaria parasite mitochondrion with imported carbon from two major sources - glucose and glutamine.

SIGNIFICANCE

The mitochondrion of malaria parasites generates key molecules, such as acetyl-CoA, that are required for numerous cellular processes. To support mitochondrial biosynthetic pathways, the parasites must transport carbon sources into this organelle. By studying how the mitochondrion obtains pyruvate, a molecule derived from glucose, we have uncovered redundant carbon transport systems that ensure parasite survival in red blood cells. This metabolic redundancy poses a challenge for drug development, as it enables the parasite to adapt and survive by relying on alternative pathways when one is disrupted.

摘要

未标记

最致命的人类疟原虫的线粒体,是疟原虫生命周期无性血液阶段细胞乙酰辅酶A的重要来源。阻断线粒体乙酰辅酶A的合成会导致蛋白质组低乙酰化和疟原虫死亡。我们之前确定线粒体乙酰辅酶A主要由α-酮酸脱氢酶从葡萄糖衍生的丙酮酸合成。在此,我们询问抑制糖酵解丙酮酸跨线粒体内膜的转运是否会影响乙酰辅酶A的产生,从而可能成为抗疟药物开发的潜在靶点。我们选择了两种预测的线粒体丙酮酸载体蛋白(MPC1和MPC2)进行基因敲除,并通过HPLC-MS代谢组学分析进行同位素代谢物追踪。令人惊讶的是,我们观察到无性血液阶段的疟原虫在缺失一个或两个MPC的情况下仍能存活,只是生长有轻微缺陷,尽管葡萄糖衍生的同位素标记进入乙酰辅酶A的量大幅减少。此外,另外两种线粒体羧酸转运蛋白——DTC(二/三羧酸载体)和YHM2(一种假定的柠檬酸/α-酮戊二酸载体蛋白)的基因缺失,即使在MPC缺乏的情况下,对无性血液阶段的复制也只有轻微影响。尽管我们在这些四重敲除突变体中未观察到对葡萄糖碳掺入乙酰辅酶A有额外影响,但我们注意到三羧酸循环代谢物中谷氨酰胺衍生的标记大幅减少,这表明DTC和YHM2都将谷氨酰胺衍生物转运到线粒体中。总之,我们的结果揭示了用于为血液阶段疟原虫线粒体提供来自两个主要来源——葡萄糖和谷氨酰胺的输入碳的冗余途径。

意义

疟原虫的线粒体产生许多细胞过程所需的关键分子,如乙酰辅酶A。为了支持线粒体生物合成途径,疟原虫必须将碳源转运到这个细胞器中。通过研究线粒体如何获取丙酮酸(一种源自葡萄糖的分子),我们发现了冗余的碳转运系统,这些系统确保疟原虫在红细胞中存活。这种代谢冗余对药物开发构成了挑战,因为当一条途径被破坏时,它使疟原虫能够通过依赖替代途径来适应和存活。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7f9/11623635/6f43fdb60391/nihpp-2024.11.26.624872v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验