Reyes-Suárez Juan C, Buitrago Manuel, Barros Brais, Mammeri Safae, Makoond Nirvan, Lázaro Carlos, Riveiro Belén, Adam Jose M
ICITECH, Universitat Politècnica de València, Valencia, Spain.
CINTECX, Universidade de Vigo, Applied Geotechnologies Research Group, Vigo, Spain.
Nature. 2025 Sep;645(8079):101-107. doi: 10.1038/s41586-025-09300-8. Epub 2025 Sep 3.
Steel truss bridges are constructed by connecting many different types of bars (components) to form a load-bearing structural system. Several disastrous collapses of this type of bridge have occurred as a result of initial component failure(s) propagating to the rest of the structure. Despite the prevalence and importance of these structures, it is still unclear why initial component failures propagate disproportionately in some bridges but barely affect functionality in others. Here we uncover and characterize the fundamental secondary resistance mechanisms that allow steel truss bridges to withstand the initial failure of any main component. These mechanisms differ substantially from the primary resistance mechanisms considered during the design of (undamaged) bridges. After testing a scaled-down specimen of a real bridge and using validated numerical models to simulate the failure of all main bridge components, we show how secondary resistance mechanisms interact to redistribute the loads supported by failed components to other parts of the structure. By studying the evolution of these mechanisms under increasing loads up to global failure, we are able to describe the conditions that enable their effective development. These findings can be used to enhance present bridge design and maintenance strategies, ultimately leading to safer transport networks.
钢桁架桥是通过连接多种不同类型的杆件(构件)来构建承载结构体系的。由于初始构件失效向结构其余部分扩展,这类桥梁发生了几起灾难性坍塌事件。尽管这些结构普遍且重要,但为何初始构件失效在某些桥梁中不成比例地扩展,而在其他桥梁中却几乎不影响其功能,目前仍不清楚。在此,我们揭示并描述了使钢桁架桥能够承受任何主要构件初始失效的基本二次抵抗机制。这些机制与(未受损)桥梁设计过程中考虑的主要抵抗机制有很大不同。在测试了一座真实桥梁的缩尺模型,并使用经过验证的数值模型模拟桥梁所有主要构件的失效后,我们展示了二次抵抗机制如何相互作用,将失效构件所承受的荷载重新分配到结构的其他部分。通过研究这些机制在直至整体失效的不断增加的荷载作用下的演变,我们能够描述使其有效发展的条件。这些发现可用于改进当前的桥梁设计和维护策略,最终打造更安全的交通网络。