Suppr超能文献

从适应性深部脑刺激到适应性电路靶向

From adaptive deep brain stimulation to adaptive circuit targeting.

作者信息

Horn Andreas, Neumann Wolf-Julian

机构信息

Network Stimulation Institute, Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany.

Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Nat Rev Neurol. 2025 Sep 3. doi: 10.1038/s41582-025-01131-5.

Abstract

Deep brain stimulation (DBS) substantially improves motor symptoms and quality of life in people with movement disorders such as Parkinson disease and dystonia, and it is also being explored as a treatment option for other brain disorders, including treatment-resistant obsessive-compulsive disorder, Alzheimer disease and depression. Two major developments are currently driving progress in DBS research: first, the framework of adaptive DBS, which senses brain activity to infer the momentary state of the symptoms of a patient and reacts by adapting stimulation settings, and second, the concept of connectomic DBS, which identifies brain circuits that should optimally be stimulated to reduce specific symptoms. In this Perspective, we propose a unified framework that combines these two concepts. Our approach, termed adaptive circuit targeting, decodes symptom severity from brain signals and adaptively activates the most relevant symptom-response circuits. We discuss the state of the art in the adaptive and connectomic DBS fields and the research gaps that need to be addressed to unify these concepts.

摘要

深部脑刺激(DBS)可显著改善帕金森病和肌张力障碍等运动障碍患者的运动症状和生活质量,目前它也正在被探索作为治疗其他脑部疾病的一种选择,包括难治性强迫症、阿尔茨海默病和抑郁症。目前有两个主要进展推动着DBS研究的进步:第一,自适应DBS框架,它能感知大脑活动以推断患者症状的瞬时状态,并通过调整刺激设置做出反应;第二,连接组学DBS概念,它可识别为减轻特定症状而应最佳刺激的脑回路。在本观点文章中,我们提出了一个将这两个概念结合起来的统一框架。我们的方法称为自适应回路靶向,它从脑信号中解码症状严重程度,并自适应地激活最相关的症状反应回路。我们讨论了自适应和连接组学DBS领域的现状以及统一这些概念需要解决的研究差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验