Suppr超能文献

用于骨质疏松症筛查的临床-放射学列线图的开发与内部验证:一项队列回顾性研究。

Development and internal validation of a clinical-radiological nomogram for osteoporosis screening: A cohort retrospective study.

作者信息

Yi Meng, Lin Wancheng, Zhang Yao, Fang Xiutong, Zhang Genai, Song Jipeng, Ding Lixiang

机构信息

Beijing Shijitan Hospital, Beijing, China.

Capital Medical University, Beijing, China.

出版信息

Eur Spine J. 2025 Sep 4. doi: 10.1007/s00586-025-09330-w.

Abstract

STUDY DESIGN

Retrospective cohort study.

OBJECTIVES

The goal of this study was to identify the clinical and radiological characteristics of patients with osteoporosis and to develop a practical clinical prediction model for patients for accurately predicting the risk of osteoporosis.

METHODS

This study included 954 patients from September 2020 to September 2024 at our hospital. Independent risk factors were selected by the least absolute shrinkage and selection operator method (LASSO) regression. Then, a prediction model (nomogram) was established. Randomly split internal validation cohorts were used to test the nomogram model's calibration, discrimination, and clinical utility.

RESULTS

Six independent prediction factors, age, female, glucocorticoid use, chronic obstructive pulmonary disease (COPD), cut-off values for Hounsfield unit (HU) and vertebral quality (VBQ) scores, were identified, and based on this a nomogram model was developed for predicting patient prognosis. The C-index of the prediction nomogram was 0.86 in training set. The area under the receiver operating characteristic curve (AUC) was 0.87 in both the training and validation sets. The model has good practicability for clinics according to the decision curve analysis (DCA) and clinical impact curve (CIC).

CONCLUSIONS

The nomogram model has good predictive performance and clinical practicability, which could provide a certain basis for simplifying osteoporosis diagnosis.

摘要

研究设计

回顾性队列研究。

目的

本研究旨在确定骨质疏松症患者的临床和影像学特征,并开发一种实用的临床预测模型,以准确预测患者患骨质疏松症的风险。

方法

本研究纳入了2020年9月至2024年9月在我院就诊的954例患者。采用最小绝对收缩和选择算子法(LASSO)回归选择独立危险因素。然后,建立了一个预测模型(列线图)。使用随机划分的内部验证队列来测试列线图模型的校准、区分度和临床实用性。

结果

确定了六个独立的预测因素,即年龄、女性、使用糖皮质激素、慢性阻塞性肺疾病(COPD)、亨氏单位(HU)截断值和椎体质量(VBQ)评分,并据此建立了一个用于预测患者预后的列线图模型。预测列线图在训练集中的C指数为0.86。在训练集和验证集中,受试者操作特征曲线(AUC)下的面积均为0.87。根据决策曲线分析(DCA)和临床影响曲线(CIC),该模型在临床上具有良好的实用性。

结论

列线图模型具有良好的预测性能和临床实用性,可为简化骨质疏松症诊断提供一定依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验