Suppr超能文献

基于MRI的深度学习影像组学预测口咽癌组织学分化:一项多中心队列研究

MRI-based deep learning radiomics in predicting histological differentiation of oropharyngeal cancer: a multicenter cohort study.

作者信息

Pan Zhaoyu, Lu Wei, Yu Changyun, Fu Sen, Ling Hang, Liu Yong, Zhang Xin, Gong Liang

机构信息

Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.

Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.

出版信息

Clin Transl Oncol. 2025 Sep 3. doi: 10.1007/s12094-025-04042-5.

Abstract

BACKGROUND

The primary aim of this research was to create and rigorously assess a deep learning radiomics (DLR) framework utilizing magnetic resonance imaging (MRI) to forecast the histological differentiation grades of oropharyngeal cancer.

METHODS

This retrospective analysis encompassed 122 patients diagnosed with oropharyngeal cancer across three medical institutions in China. The participants were divided at random into two groups: a training cohort comprising 85 individuals and a test cohort of 37. Radiomics features derived from MRI scans, along with deep learning (DL) features, were meticulously extracted and carefully refined. These two sets of features were then integrated to build the DLR model, designed to assess the histological differentiation of oropharyngeal cancer. The model's predictive efficacy was gaged through the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA).

RESULTS

The DLR model demonstrated impressive performance, achieving strong AUC scores of 0.871 on the training cohort and 0.803 on the test cohort, outperforming both the standalone radiomics and DL models. Additionally, the DCA curve highlighted the significance of the DLR model in forecasting the histological differentiation of oropharyngeal cancer.

CONCLUSIONS

The MRI-based DLR model demonstrated high predictive ability for histological differentiation of oropharyngeal cancer, which might be important for accurate preoperative diagnosis and clinical decision-making.

摘要

背景

本研究的主要目的是创建并严格评估一种利用磁共振成像(MRI)预测口咽癌组织学分化程度的深度学习放射组学(DLR)框架。

方法

这项回顾性分析纳入了中国三家医疗机构诊断为口咽癌的122例患者。参与者被随机分为两组:一个由85人组成的训练队列和一个37人的测试队列。从MRI扫描中提取并精心完善了放射组学特征以及深度学习(DL)特征。然后将这两组特征整合以构建DLR模型,用于评估口咽癌的组织学分化。通过受试者操作特征曲线(AUC)下的面积和决策曲线分析(DCA)来衡量该模型的预测效能。

结果

DLR模型表现出色,在训练队列中AUC得分为0.871,在测试队列中为0.803,均优于单独的放射组学模型和DL模型。此外,DCA曲线突出了DLR模型在预测口咽癌组织学分化方面的重要性。

结论

基于MRI的DLR模型对口咽癌组织学分化具有较高的预测能力,这可能对准确的术前诊断和临床决策具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验