Liang Wenhua, Yu Hong, Duan Lisha, Li Xiaona, Wang Ming, Wang Bing, Cui Jianling
Department of Radiology, Third Hospital of Hebei Medical University, Shijiangzhuang, China.
Front Oncol. 2025 May 14;15:1603672. doi: 10.3389/fonc.2025.1603672. eCollection 2025.
Vertebral compression fractures (VCFs) represent a prevalent clinical problem, yet distinguishing acute benign variants from malignant pathological fractures constitutes a persistent diagnostic dilemma. To develop and validate a MRI-based nomogram combining clinical and deep learning radiomics (DLR) signatures for the differentiation of benign versus malignant vertebral compression fractures (VCFs).
A retrospective cohort study was conducted involving 234 VCF patients, randomly allocated to training and testing sets at a 7:3 ratio. Radiomics (Rad) features were extracted using traditional Rad techniques, while 2.5-dimensional (2.5D) deep learning (DL) features were obtained using the ResNet50 model. These features were combined through feature fusion to construct deep learning radiomics (DLR) models. Through a feature fusion strategy, this study integrated eight machine learning architectures to construct a predictive framework, ultimately establishing a visualized risk assessment scale based on multimodal data (including clinical indicators and Rad features).The performance of the various models was evaluated using the receiver operating characteristic (ROC) curve.
The standalone Rad model using ExtraTrees achieved AUC=0.801 (95%CI:0.693-0.909) in testing, while the DL model an AUC value of 0.805 (95% CI: 0.690-0.921) in the testing cohort. Compared with the Rad model and DL model, the performance superiority of the DLR model was demonstrated. Among all these models, the DLR model that employed ExtraTrees algorithm performed the best, with area under the curve (AUC) values of 0.971 (95% CI: 0.948-0.995) in the training dataset and 0.828 (95% CI: 0.727-0.929) in the testing dataset. The performance of this model was further improved when combined with clinical and MRI features to form the DLR nomogram (DLRN), achieving AUC values of 0.981 (95% CI: 0.964-0.998) in the training dataset and 0.871 (95% CI: 0.786-0.957) in the testing dataset.
Our study integrates handcrafted radiomics, 2.5D deep learning features, and clinical data into a nomogram (DLRN). This approach not only enhances diagnostic accuracy but also provides superior clinical utility. The novel 2.5D DL framework and comprehensive feature fusion strategy represent significant advancements in the field, offering a robust tool for radiologists to differentiate benign from malignant VCFs.
椎体压缩性骨折(VCF)是一个常见的临床问题,然而区分急性良性变异与恶性病理性骨折一直是诊断上的难题。开发并验证一种基于磁共振成像(MRI)的列线图,该列线图结合临床和深度学习影像组学(DLR)特征,用于鉴别良性与恶性椎体压缩性骨折(VCF)。
进行一项回顾性队列研究,纳入234例VCF患者,按7:3的比例随机分配到训练集和测试集。使用传统影像组学(Rad)技术提取影像组学特征,同时使用ResNet50模型获取2.5维(2.5D)深度学习(DL)特征。通过特征融合将这些特征相结合,构建深度学习影像组学(DLR)模型。本研究通过特征融合策略,整合八种机器学习架构构建预测框架,最终基于多模态数据(包括临床指标和Rad特征)建立可视化风险评估量表。使用受试者工作特征(ROC)曲线评估各种模型的性能。
在测试中,使用ExtraTrees算法的独立Rad模型的曲线下面积(AUC)=0.801(95%置信区间:0.693 - 0.909),而DL模型在测试队列中的AUC值为0.805(95%置信区间:0.690 - 0.921)。与Rad模型和DL模型相比,DLR模型表现出性能优势。在所有这些模型中,采用ExtraTrees算法的DLR模型表现最佳,在训练数据集中的曲线下面积(AUC)值为0.971(95%置信区间:0.948 - 0.995),在测试数据集中为0.828(95%置信区间:0.727 - 0.929)。当该模型与临床和MRI特征相结合形成DLR列线图(DLRN)时,性能进一步提高,在训练数据集中的AUC值为0.981(95%置信区间:0.964 - 0.998),在测试数据集中为0.871(95%置信区间:0.786 - 0.957)。
我们的研究将手工制作的影像组学、2.5D深度学习特征和临床数据整合到一个列线图(DLRN)中。这种方法不仅提高了诊断准确性,还具有卓越的临床实用性。新颖的2.5D DL框架和综合特征融合策略代表了该领域的重大进展,为放射科医生鉴别良性与恶性VCF提供了一个强大的工具。