Suppr超能文献

应用深度学习量化瑞典海洋保护区长期生态变化的驱动因素。

Applying Deep Learning to Quantify Drivers of Long-Term Ecological Change in a Swedish Marine Protected Area.

作者信息

Nilsson Christian L, Faurby Søren, Burman Emil, Germishuys Jurie, Obst Matthias

机构信息

Department of Marine Sciences University of Gothenburg Gothenburg Sweden.

Gothenburg Global Biodiversity Centre Gothenburg Sweden.

出版信息

Ecol Evol. 2025 Sep 2;15(9):e72091. doi: 10.1002/ece3.72091. eCollection 2025 Sep.

Abstract

In this study, we trained an object-detection model to classify 17 benthic invertebrate taxa in archived footage of a study site on the northern west coast of Sweden (a wall section of the Koster Fjord) within the Swedish marine protected area Kosterhavet National Park. The model displayed a mean average precision score of 0.738 and was applied to footage from 1997 to 2023, generating a dataset of 72,369 occurrence records. The dataset was used to quantify depth distributions and abundance trends of both individual taxa and functional groups over time. Depth distributions for 15 of 17 taxa occurred at depths ≥ 45 m. Distributions of 11 taxa aligned with empirical observations, and for the remaining six taxa, we propose expanded depth distributions in the area. Abundances over time significantly increased for eight taxa and decreased for five taxa, while the overall community structure throughout the study period shifted toward smaller, more heat-tolerant suspension feeders. We found that temperature preference and size were significant drivers of the observed abundance trends in individual taxa. Community structure was altered by the loss of large, heat-sensitive taxa to greater depths due to increased temperatures. We also observed a strong trend of increasing abundances in the remaining community, including six trawling-sensitive taxa, highlighting the effectiveness of the park's protective measures. To protect key cold-water species, we suggest that current fishery regulations of the national park should be expanded to deeper (colder) waters and that new marine protected areas should also be established in deep waters. Our study demonstrates the application potential of video surveillance combined with deep-learning technology, and we recommend the implementation of standardized video monitoring in marine ecosystem management.

摘要

在本研究中,我们训练了一个目标检测模型,用于对瑞典西海岸北部一个研究地点(科斯特峡湾的一段海墙)的存档影像中的17种底栖无脊椎动物分类群进行分类,该地点位于瑞典海洋保护区科斯特海国家公园内。该模型的平均精度得分为0.738,并应用于1997年至2023年的影像,生成了一个包含72369条出现记录的数据集。该数据集用于量化各个分类群和功能组随时间的深度分布和丰度趋势。17个分类群中有15个的深度分布出现在≥45米的深度。11个分类群的分布与实证观察结果一致,对于其余6个分类群,我们提出了该区域扩展后的深度分布。随着时间的推移,8个分类群的丰度显著增加,5个分类群的丰度下降,而在整个研究期间,整个群落结构向更小、更耐热的悬浮取食者转变。我们发现温度偏好和体型是观察到的各个分类群丰度趋势的重要驱动因素。由于温度升高,大型、对热敏感的分类群向更深的水域迁移,导致群落结构发生改变。我们还观察到其余群落中丰度增加的强烈趋势,包括6个对拖网敏感的分类群,突出了公园保护措施的有效性。为了保护关键的冷水物种,我们建议将国家公园目前的渔业法规扩展到更深(更冷)的水域,并且还应在深水区建立新的海洋保护区。我们的研究展示了视频监控与深度学习技术相结合的应用潜力,并且我们建议在海洋生态系统管理中实施标准化的视频监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验