文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Elucidating the gut microbiota-driven crosstalk: mechanistic interplay of lobetyolin in coordinating cholesterol homeostasis and anti-inflammatory pathways in hyperlipidemic mice models.

作者信息

Duan Guofeng, Zhang Yuning, Liu Siyuan, Wang Siqi, Liu Jinjia, Li Lijuan, Lai Lina

机构信息

School of Pharmacy, Changzhi Medical College, Changzhi, Shanxi, China.

Shanxi Provincial Department-Municipal Key Laboratory Cultivation Base for Quality Enhancement and Utilization of Shangdang Chinese Medicinal Materials, Changzhi Medical College, Changzhi, Shanxi, China.

出版信息

Front Microbiol. 2025 Aug 19;16:1625211. doi: 10.3389/fmicb.2025.1625211. eCollection 2025.


DOI:10.3389/fmicb.2025.1625211
PMID:40904678
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12402901/
Abstract

BACKGROUND: Hyperlipidemia is a prevalent metabolic disorder closely associated with gut microbiota imbalance. In recent years, traditional Chinese medicine has demonstrated distinct advantages in the regulation of the gut microbiota and enhancement of metabolic health. This study aimed to elucidate the molecular processes by which lobetyolin modifies the gut microbiota to improve intestinal inflammation and lipid metabolism in hyperlipidemic mice. METHODS: Forty female KM mice were randomly allocated to four groups: control, model, LBT1, and LBT2. Mice in the LBT1 and LBT2 groups received intraperitoneal injections of the corresponding concentrations of LBT for ten consecutive days, whereas mice in the control and model groups received intraperitoneal injections of physiological saline. Beginning on the eighth day, mice in the model, LBT1, and LBT2 groups received subcutaneous injections of Triton WR-1339 for three consecutive days, whereas those in the control group received subcutaneous injections of physiological saline concurrently. On the eleventh day of the experiment, serum, liver, colon, and fecal samples were collected from all mice. This study aimed to measure lipid metabolism in mouse serum and liver, assess the inflammatory status of the mouse colon, and evaluate changes in the gut microbiota. RESULTS: Lobetyolin significantly reduced the levels of triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), and total cholesterol (T-CHO) in the serum of hyperlipidemic mice. Concurrently, it elevated the levels of high-density lipoprotein cholesterol (HDL-C). The mechanism involves the reduction of endogenous cholesterol production and promotion of reverse cholesterol transport. LBT can also alleviate inflammatory responses by inhibiting the TLR4/NF-κB signaling pathway. In addition, it can regulate the balance of Th1 and Th2 immunity and enhance the immune capacity of the colon mucosa. According to the results of 16S rRNA sequencing, LBT increased the abundance of beneficial gut microbiota, such as , , and , which were positively correlated with HDL-C, IL-10, IL-4, and SIgA but negatively correlated with T-CHO, TG, LDL-C, VLDL-C, IL-6, IFN-γ, and TNF-α. CONCLUSION: Our findings emphasize that lobetyolin exerts lipid-lowering and anti-inflammatory effects by regulating the ecological structure of the gut microbiota.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/b349de93b801/fmicb-16-1625211-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/174d1c90ba5c/fmicb-16-1625211-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/cbc19294168c/fmicb-16-1625211-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/37b596d97d1d/fmicb-16-1625211-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/c20710b4c96f/fmicb-16-1625211-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/edabe96ccd12/fmicb-16-1625211-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/bcd329d00b08/fmicb-16-1625211-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/ca33a08f014e/fmicb-16-1625211-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/238ce8640226/fmicb-16-1625211-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/8896350a02e6/fmicb-16-1625211-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/00fa27bfa3ae/fmicb-16-1625211-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/54d48c90b815/fmicb-16-1625211-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/729e3496d974/fmicb-16-1625211-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/b349de93b801/fmicb-16-1625211-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/174d1c90ba5c/fmicb-16-1625211-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/cbc19294168c/fmicb-16-1625211-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/37b596d97d1d/fmicb-16-1625211-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/c20710b4c96f/fmicb-16-1625211-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/edabe96ccd12/fmicb-16-1625211-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/bcd329d00b08/fmicb-16-1625211-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/ca33a08f014e/fmicb-16-1625211-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/238ce8640226/fmicb-16-1625211-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/8896350a02e6/fmicb-16-1625211-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/00fa27bfa3ae/fmicb-16-1625211-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/54d48c90b815/fmicb-16-1625211-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/729e3496d974/fmicb-16-1625211-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81c/12402901/b349de93b801/fmicb-16-1625211-g013.jpg

相似文献

[1]
Elucidating the gut microbiota-driven crosstalk: mechanistic interplay of lobetyolin in coordinating cholesterol homeostasis and anti-inflammatory pathways in hyperlipidemic mice models.

Front Microbiol. 2025-8-19

[2]
Gegen Qinlian decoction ameliorates TNBS-induced ulcerative colitis by regulating Th2/Th1 and Tregs/Th17 cells balance, inhibiting NLRP3 inflammasome activation and reshaping gut microbiota.

J Ethnopharmacol. 2024-6-28

[3]
Schisandrin B alleviates metabolic associated fatty liver disease by regulating the PPARγ signaling pathway and gut microbiota in mice.

Front Pharmacol. 2025-7-25

[4]
Intestinal inflammation and microbiota modulation impact cochlear function: emerging insights in gut-ear axis.

Cell Commun Signal. 2025-7-26

[5]
Mulberry leaf improves type 2 diabetes in mice via gut microbiota-SCFAs-GPRs axis and AMPK signaling pathway.

Phytomedicine. 2025-9

[6]
Circ_HUWE1: a novel regulator of lipid accumulation, inflammation, and gut microbiota in atherosclerosis.

Cell Biosci. 2025-7-19

[7]
Combination of Withania coagulans and Fagonia cretica ameliorates hyperuricemia by re-modulating gut microbiota-derived spermidine and traumatic acid.

Phytomedicine. 2025-9

[8]
Study on the modulation of kidney and liver function of rats with diabetic nephropathy by Huidouba through metabolomics.

J Ethnopharmacol. 2025-6-11

[9]
T-bet expressing Tr1 cells driven by dietary signals dominate the small intestinal immune landscape.

bioRxiv. 2025-7-4

[10]
Paeoniflorin improves atherosclerosis by regulating the gut microbiota and fecal metabolites.

mSystems. 2025-8-15

本文引用的文献

[1]
Systematic analysis of the antibacterial mechanisms of reuterin using the Keio collection.

mBio. 2025-8-13

[2]
Apigenin attenuates the atherosclerotic lesions through enhancing selective autophagy/lipophagy and promoting RCT process.

Pharm Biol. 2025-12

[3]
Hawthorn pectin mitigates high-fat diet induced hyperlipidemia in mice through promoting Dubosiella newyorkensis.

Carbohydr Polym. 2025-7-1

[4]
Curcumin Ameliorated Glucocorticoid-Induced Osteoporosis While Modulating the Gut Microbiota and Serum Metabolome.

J Agric Food Chem. 2025-4-9

[5]
Alleviating effect of E15 on hyperlipidemia and hepatic lipid metabolism in zebrafish fed by a high-fat diet through the production of short-chain fatty acids.

Front Nutr. 2025-3-3

[6]
-derived acetate activates the hepatic AMPK/SIRT1/PGC-1 axis to alleviate ferroptosis in metabolic-associated fatty liver disease.

Acta Pharm Sin B. 2025-1

[7]
Alpha-aminobutyric acid ameliorates diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) progression in mice via enhancing AMPK/SIRT1 pathway and modulating the gut-liver axis.

J Nutr Biochem. 2025-6

[8]
The role of in maintaining health: a bibliometric study.

Front Med (Lausanne). 2025-2-3

[9]
Forsythia suspensa leaf fermented tea extracts attenuated oxidative stress in mice via the Ref-1/HIF-1α signal pathway and modulation of gut microbiota.

Sci Rep. 2025-2-3

[10]
Anti-atherosclerotic effects of natural compounds targeting lipid metabolism and inflammation: Focus on PPARs, LXRs, and PCSK9.

Atheroscler Plus. 2024-12-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索