An Yongpan, Wang Qian, Gao Ke, Zhang Chi, Ouyang Yanan, Li Ruixiao, Ma Zhou, Wu Tong, Zhou Lifan, Xie Zhengwei, Zhang Rui, Wu Guojun
Department of Urology Xi'an People's Hospital (Xi'an Fourth Hospital) School of Life Sciences and Medicine Northwest University Xi'an China.
State Key Laboratory of Cancer Biology Department of Biochemistry and Molecular Biology Air Force Medical University Xi'an China.
MedComm (2020). 2025 Sep 1;6(9):e70369. doi: 10.1002/mco2.70369. eCollection 2025 Sep.
Aging increases the global burden of disease, yet its molecular basis remains incompletely understood. Recent studies indicate that reversible epigenetic drift-spanning DNA methylation clocks, histone codes, three-dimensional chromatin, and noncoding RNA networks-constitutes a central regulator of organismal decline and age-related diseases. How these epigenetic layers interact across different tissues-and how best to translate them into therapeutic strategies-are still open questions. This review outlines the specific mechanisms by which epigenetic changes influence aging, highlighting their impact on genomic instability, stem-cell exhaustion, and mitochondrial dysfunction. We critically evaluate emerging rejuvenation strategies-partial OSKM reprogramming, CRISPR-dCas9 epigenome editing, NAD⁺/sirtuin boosters, HDAC inhibitors, microbiota transfer, and precision lifestyle interventions-detailing their efficacy in resetting epigenetic age and restoring tissue homeostasis. Integrating single-cell multiomics and second-generation epigenetic clocks, we propose a roadmap for translating these insights into safe, personalized antiaging medicine.
衰老增加了全球疾病负担,但其分子基础仍未完全明晰。近期研究表明,可逆的表观遗传漂变——涵盖DNA甲基化时钟、组蛋白密码、三维染色质和非编码RNA网络——构成了机体衰退和年龄相关疾病的核心调节因子。这些表观遗传层面如何在不同组织间相互作用,以及如何最好地将其转化为治疗策略,仍是悬而未决的问题。本综述概述了表观遗传变化影响衰老的具体机制,强调了它们对基因组不稳定、干细胞耗竭和线粒体功能障碍的影响。我们批判性地评估新兴的年轻化策略——部分OSKM重编程、CRISPR-dCas9表观基因组编辑、NAD⁺/sirtuin增强剂、HDAC抑制剂、微生物群移植和精准生活方式干预——详述它们在重置表观遗传年龄和恢复组织稳态方面的功效。整合单细胞多组学和第二代表观遗传时钟,我们提出了将这些见解转化为安全、个性化抗衰老医学的路线图。