Suppr超能文献

生成式图字典学习

Generative Graph Dictionary Learning.

作者信息

Zeng Zhichen, Zhu Ruike, Xia Yinglong, Zeng Hanqing, Tong Hanghang

机构信息

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Meta, CA, USA.

出版信息

Proc Mach Learn Res. 2023;1:40749-40769.

Abstract

Dictionary learning, which approximates data samples by a set of shared atoms, is a fundamental task in representation learning. However, dictionary learning over graphs, namely graph dictionary learning (GDL), is much more challenging than vectorial data as graphs lie in disparate metric spaces. The sparse literature on GDL formulates the problem from the reconstructive view and often learns linear graph embeddings with a high computational cost. In this paper, we propose a Fused Gromov-Wasserstein (FGW) Mixture Model named FraMe to address the GDL problem from the generative view. Equipped with the graph generation function based on the radial basis function kernel and FGW distance, FraMe generates nonlinear embedding spaces, which, as we theoretically proved, provide a good approximation of the original graph spaces. A fast solution is further proposed on top of the expectation-maximization algorithm with guaranteed convergence. Extensive experiments demonstrate the effectiveness of the obtained node and graph embeddings, and our algorithm achieves significant improvements over the state-of-the-art methods.

摘要

字典学习通过一组共享原子来逼近数据样本,是表示学习中的一项基本任务。然而,基于图的字典学习,即图字典学习(GDL),比向量数据更具挑战性,因为图存在于不同的度量空间中。关于GDL的稀疏文献从重构角度阐述问题,并且常常以高计算成本学习线性图嵌入。在本文中,我们提出一种名为FraMe的融合Gromov-Wasserstein(FGW)混合模型,从生成角度解决GDL问题。基于径向基函数核和FGW距离配备图生成函数,FraMe生成非线性嵌入空间,正如我们理论证明的,该空间能很好地逼近原始图空间。在期望最大化算法之上还进一步提出了一种具有收敛保证的快速解决方案。大量实验证明了所获得的节点和图嵌入的有效性,并且我们的算法相对于现有方法有显著改进。

相似文献

1
Generative Graph Dictionary Learning.
Proc Mach Learn Res. 2023;1:40749-40769.
2
Multiscale Subgraph Adversarial Contrastive Learning.
IEEE Trans Neural Netw Learn Syst. 2025 Aug;36(8):15001-15014. doi: 10.1109/TNNLS.2025.3543954.
4
Geometric Scattering on Measure Spaces.
Appl Comput Harmon Anal. 2024 May;70. doi: 10.1016/j.acha.2024.101635. Epub 2024 Feb 6.
5
BioBLP: a modular framework for learning on multimodal biomedical knowledge graphs.
J Biomed Semantics. 2023 Dec 8;14(1):20. doi: 10.1186/s13326-023-00301-y.
6
SFPGCL: Specificity-preserving federated population graph contrastive learning for multi-site ASD identification using rs-fMRI data.
Comput Med Imaging Graph. 2025 Sep;124:102558. doi: 10.1016/j.compmedimag.2025.102558. Epub 2025 May 16.
7
8
Optimizing hybrid network topologies in communication networks through irregularity strength.
Sci Rep. 2025 Aug 11;15(1):29330. doi: 10.1038/s41598-025-05631-8.
10
Hyperrectangle Embedding for Debiased 3D Scene Graph Prediction From RGB Sequences.
IEEE Trans Pattern Anal Mach Intell. 2025 Aug;47(8):6410-6426. doi: 10.1109/TPAMI.2025.3560090.

本文引用的文献

1
node2vec: Scalable Feature Learning for Networks.
KDD. 2016 Aug;2016:855-864. doi: 10.1145/2939672.2939754.
2
Protein function prediction via graph kernels.
Bioinformatics. 2005 Jun;21 Suppl 1:i47-56. doi: 10.1093/bioinformatics/bti1007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验