Ding Hanlin, Cheng Minqian, Wang Ning, Cheng Jingjin, Li Bo, Cao Aiqing, Gu Zhouqing, Ma Xinyi, Wu Jiali, Liu Yan, Lyu Yanan, Mei Yingjie, Ma Mengze, Zhang Minghan, Xin Huijun, Kuang Yun, Li Yaping, Zhou Daojin, Sun Xiaoming
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
Beijing Huairou Laboratory, Beijing 100029, P. R. China.
Nanoscale. 2025 Sep 25;17(37):21516-21522. doi: 10.1039/d5nr03168k.
Electrochemical water splitting offers a sustainable strategy for hydrogen production, yet the kinetic sluggishness of the oxygen evolution reaction (OER) due to high activation barriers remains a critical challenge. NiFe layered double hydroxide (NiFe LDH) is a promising OER catalyst in alkaline media, but its performance suffers from limited active site exposure and insufficient durability. Herein, the rational design of a Ta-doped NiFe LDH (NiFeTa LDH) were achieved a facile hydrothermal method. Ta incorporation results in basal spacing expansion, and induction of electronic redistribution-primarily electron transfer from Fe to Ta-thus enhancing OER intermediate adsorption. Consequently, NiFeTa LDH exhibited superior OER activity, delivering a low overpotential of 200 mV at a current density of 10 mA cm. Remarkably, it sustains long-term operation at 1 A cm for over 2000 hours, demonstrating exceptional durability under industrially relevant conditions. Complementary DFT+U calculations reveal that Ta doping induces an upshift of the d-band center at the active sites, thereby contributing to the optimized OER intermediate adsorption. This electronic modulation is identified as the key factor underlying the observed catalytic enhancement. This work highlights the effectiveness of high-valence ion doping for tuning LDH-based electrocatalysts toward practical water electrolysis applications.
电化学水分解为制氢提供了一种可持续的策略,然而,由于高活化能垒导致的析氧反应(OER)动力学迟缓仍然是一个关键挑战。镍铁层状双氢氧化物(NiFe LDH)是碱性介质中一种很有前景的OER催化剂,但其性能受到活性位点暴露有限和耐久性不足的影响。在此,通过一种简便的水热法实现了Ta掺杂的NiFe LDH(NiFeTa LDH)的合理设计。Ta的掺入导致层间距扩大,并诱导电子重新分布——主要是电子从Fe转移到Ta——从而增强OER中间体的吸附。因此,NiFeTa LDH表现出优异的OER活性,在电流密度为10 mA cm时具有200 mV的低过电位。值得注意的是,它在1 A cm下可维持超过2000小时的长期运行,在工业相关条件下表现出卓越的耐久性。互补的DFT+U计算表明,Ta掺杂导致活性位点处d带中心上移,从而有助于优化OER中间体的吸附。这种电子调制被确定为观察到的催化增强的关键因素。这项工作突出了高价离子掺杂对调整基于LDH的电催化剂以用于实际水电解应用的有效性。