Liu Xuwei, Huang Bing, Wang Hao, Feng Zhijie, Wu Qirui, Jiang Nannan, Guan Lunhui
State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Institute of Zhejiang University-Quzhou, Quzhou 324000, China.
J Colloid Interface Sci. 2025 Sep 11;702(Pt 2):139006. doi: 10.1016/j.jcis.2025.139006.
The development of efficient and durable oxygen evolution reaction (OER) catalysts under industrial conditions remains a critical challenge for alkaline water electrolysis. Here, we report a heterostructured Fe-doped NiP@V-doped NiFe layered double hydroxide (LDH) catalyst (denoted as Fe-NiP@V-NFOH), synthesized through solid-phase phosphorization and electrochemical deposition. The p-n junction formed between the p-type Fe-NiP and n-type V-NiFe LDH induces interfacial charge redistribution, accelerating electron transfer and optimizing the adsorption of oxygenated intermediates. Density functional theory (DFT) calculations reveal that compared to pristine nickel‑iron layered double hydroxide (NiFe-LDH), the synergistic effect of heterointerface and doping engineering optimizes the adsorption energy of intermediate products, reducing the energy barrier from 1.74 eV to 1.45 eV. The catalyst achieved ultralow overpotentials of 241 and 260 mV at 500 and 1000 mA cm in 1 M KOH, respectively, and exhibited only negligible degradation after 2000 h at 1 A cm. When integrated into an alkaline electrolyzer (30 wt% KOH, 80 °C), the system required only 1.70 V to deliver 1000 mA cm and maintained stability over 200 h at 500 mA cm. This work demonstrates the synergistic role of doping and heterojunction engineering in designing robust OER catalysts, providing a viable pathway toward large-scale green hydrogen production.
在工业条件下开发高效耐用的析氧反应(OER)催化剂仍然是碱性水电解面临的一项关键挑战。在此,我们报道了一种通过固相磷化和电化学沉积合成的异质结构铁掺杂NiP@钒掺杂镍铁层状双氢氧化物(LDH)催化剂(表示为Fe-NiP@V-NFOH)。在p型Fe-NiP和n型V-NiFe LDH之间形成的p-n结诱导界面电荷重新分布,加速电子转移并优化含氧中间体的吸附。密度泛函理论(DFT)计算表明,与原始镍铁层状双氢氧化物(NiFe-LDH)相比,异质界面和掺杂工程的协同效应优化了中间产物的吸附能,将能垒从1.74 eV降低至1.45 eV。该催化剂在1 M KOH中,在500和1000 mA cm时分别实现了241和260 mV的超低过电位,并且在1 A cm下2000 h后仅表现出可忽略不计的降解。当集成到碱性电解槽(30 wt% KOH,80°C)中时,该系统仅需1.70 V即可提供1000 mA cm,并在500 mA cm下保持200 h以上的稳定性。这项工作证明了掺杂和异质结工程在设计稳健的OER催化剂中的协同作用,为大规模绿色制氢提供了一条可行途径。