Suppr超能文献

用于神经形态视觉传感器的基于硫族化物的脑启发式光突触:一项实验与理论研究

Chalcogenide-Based Brain-Inspired Photo-Synapses for Neuromorphic Vision Sensor: An Experimental and Theoretical Study.

作者信息

Abbas Zeesham, Riaz Muhammad, Jaffery Syed Hassan Abbas, Abidi Syed Khizar Abbas, Hussain Sajjad, Jung Jongwan

机构信息

Hybrid Materials Center (HMC), Sejong University, Seoul, 05006, Republic of Korea.

Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea.

出版信息

Small. 2025 Sep 4:e04294. doi: 10.1002/smll.202504294.

Abstract

2D chalcogenide-based memristors have the potential to be used in artificial biological visual systems since their synaptic behavior can be optically and electrically modulated. Furthermore, 2D van der Waals materials such as SnS can be used to integrate multifunctional optoelectronic devices by employing a rational design. Here, the simulation of a human biological visual system is reported by using multifunctional optoelectronic synaptic devices. First-principles-based DFT calculations show that SnS is a semiconductor with a bandgap of 2.47 eV. The electrical and optical inputs can be controlled to perform memory and logic functions consistent with those in the brain's visual cortex. In particular, an SnS memristor shows outstanding letter recognition and image memory as a function of wavelength-sensitive responses, mimicking the biological retina. When the SnS retina device is employed as the processing core, machine vision simulations indicate an excellent accuracy of 98.51% for Modified National Institute of Standards and Technology (MNIST) datasets. Owing to the excellent photosensitivity of SnS, these devices can operate at an ultralow voltage of 0.1 V, with an energy consumption of 0.345 nJ per event. Notably, the SnS-based photo-synaptic device can perform the OR and AND logical operations by varying the optical input wavelengths. These findings are expected to pave the way for the development of advanced robotic vision systems with innovative neuromorphic computing capabilities. The integration of an exfoliated 2D SnS-based optoelectronic memristor with a hybrid AI framework is the key innovative motivation of this study, wherein empirically determined synaptic characteristics are employed to guide the training of a neural network model for image recognition tasks.

摘要

基于二维硫族化物的忆阻器有潜力应用于人工生物视觉系统,因为其突触行为可通过光学和电学方式进行调制。此外,诸如SnS之类的二维范德华材料可通过合理设计用于集成多功能光电器件。在此,报道了使用多功能光电子突触器件对人类生物视觉系统进行的模拟。基于第一性原理的密度泛函理论(DFT)计算表明,SnS是一种带隙为2.47电子伏特的半导体。可以控制电输入和光输入,以执行与大脑视觉皮层中一致的存储和逻辑功能。特别是,SnS忆阻器作为波长敏感响应的函数,表现出出色的字母识别和图像存储能力,类似于生物视网膜。当将SnS视网膜器件用作处理核心时,机器视觉模拟表明,对于修改后的美国国家标准与技术研究院(MNIST)数据集,准确率高达98.51%。由于SnS具有出色的光敏性,这些器件可以在0.1伏的超低电压下运行,每次事件的能耗为0.345纳焦。值得注意的是,基于SnS的光突触器件可以通过改变光输入波长来执行“或”和“与”逻辑运算。这些发现有望为开发具有创新神经形态计算能力的先进机器人视觉系统铺平道路。将剥离的基于二维SnS的光电子忆阻器与混合人工智能框架集成是本研究的关键创新动机,其中利用经验确定的突触特性来指导用于图像识别任务的神经网络模型的训练。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验