Wu Liang-Ting, Brandell Daniel, Kaghazchi Payam, Jiang Jyh-Chiang
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
J Chem Phys. 2025 Sep 7;163(9). doi: 10.1063/5.0279513.
All-solid-state Li-metal batteries using solid polymer electrolytes (SPEs) in combination with high-voltage cathodes such as lithium nickel manganese cobalt oxide (NMC) promise enhanced battery safety, energy density, and flexibility. However, understanding the oxidative decomposition of SPEs on the cathode surfaces and characterizing the resulting cathode-electrolyte interphase (CEI) remain challenging both experimentally and computationally. This study introduces a new computational protocol based on ab initio molecular dynamics for simulating the decomposition of PEO:LiTFSI SPE on the NMC-811 cathode surface using a combined electron- and Li+-removal simulation approach. This method incorporates the effects of the applied electric potential and Li+ migration on electrolyte oxidation during battery charging. The calculations indicate that electrons are withdrawn from both the C-C bonds of PEO and the Ni-O bonds of NMC-811, resulting in C-C bond cleavage and the formation of decomposition fragments. The created Li vacancies in the NMC facilitate coupling between decomposed PEO and exposed surface oxygen. The ROCH2O-M species, identified as the major degradation product on the NMC-811 cathode surface, is in agreement with the experimental XPS spectra. This approach provides detailed insights into the oxidative decomposition of PEO-based SPEs and demonstrates its effectiveness in exploring CEI component formation.
使用固体聚合物电解质(SPEs)与锂镍锰钴氧化物(NMC)等高电压阴极相结合的全固态锂金属电池有望提高电池安全性、能量密度和灵活性。然而,了解SPEs在阴极表面的氧化分解以及表征由此产生的阴极-电解质界面(CEI)在实验和计算方面仍然具有挑战性。本研究引入了一种基于从头算分子动力学的新计算协议,用于使用电子和Li+去除模拟相结合的方法模拟PEO:LiTFSI SPE在NMC-811阴极表面的分解。该方法纳入了电池充电过程中施加电势和Li+迁移对电解质氧化的影响。计算表明,电子从PEO的C-C键和NMC-811的Ni-O键中被抽出,导致C-C键断裂并形成分解片段。NMC中产生的锂空位促进了分解的PEO与暴露的表面氧之间的耦合。在NMC-811阴极表面被确定为主要降解产物的ROCH2O-M物种与实验XPS光谱一致。该方法提供了对基于PEO的SPEs氧化分解的详细见解,并证明了其在探索CEI成分形成方面的有效性。