Suppr超能文献

通过电解质界面去质子化反应探索LiNiO阴极降解的机制。

Exploring the Mechanisms of LiNiO Cathode Degradation by the Electrolyte Interfacial Deprotonation Reaction.

作者信息

Zheng Yu, Balbuena Perla B

出版信息

ACS Appl Mater Interfaces. 2024 Oct 4;16(41):55258-66. doi: 10.1021/acsami.4c10458.

Abstract

Nickel-rich layered oxides stand as ideal cathode candidates for high specific capacity and energy density next-generation lithium-ion batteries. However, increasing the Ni content significantly exacerbates structural degradation under high operating voltage, which greatly restricts large-scale commercialization. While strategies are being developed to improve cathode material stability, little is known about the effects of electrolyte-electrode interaction on the structural changes of cathode materials. Here, using LiNiO in contact with electrolytes with different proton-generating levels as model systems, we present a holistic picture of proton-induced structural degradation of LiNiO. Through ab initio molecular dynamics calculations based on density functional theory, we investigated the mechanisms of electrolyte deprotonation, protonation-induced Ni dissolution, and cathode degradation and the impacts of dissolved Ni on the Li metal anode surfaces. We show that the proton-transfer reaction from electrolytes to cathode surfaces leads to dissolution of Ni cations in the form of NiOOH, which stimulates cation mixing and oxygen loss in the lattice accelerating its layered-spinel-rock-salt phase transition. Migration of dissolved Ni ions to the anode side causes their reduction into the metallic state and surface deposition. This work reveals that interactions between the electrolyte and cathode that result in protonation can be a dominant factor for the structural stability of Ni-rich cathodes. Considering this factor in electrolyte design should be of benefit for the development of future batteries.

摘要

富镍层状氧化物是下一代高比容量和高能量密度锂离子电池的理想正极材料。然而,镍含量的增加会显著加剧高工作电压下的结构退化,这极大地限制了其大规模商业化应用。尽管人们正在开发提高正极材料稳定性的策略,但关于电解质 - 电极相互作用对正极材料结构变化的影响却知之甚少。在此,我们以LiNiO与具有不同质子生成水平的电解质接触作为模型体系,全面展示了质子诱导的LiNiO结构退化情况。通过基于密度泛函理论的从头算分子动力学计算,我们研究了电解质去质子化、质子化诱导的镍溶解、正极退化的机制以及溶解的镍对锂金属阳极表面的影响。我们发现,从电解质到阴极表面的质子转移反应会导致Ni阳离子以NiOOH的形式溶解,这会引发晶格中的阳离子混合和氧损失,加速其层状 - 尖晶石 - 岩盐相转变。溶解的镍离子迁移到阳极一侧会导致其还原为金属态并在表面沉积。这项工作表明,导致质子化的电解质与阴极之间的相互作用可能是富镍正极结构稳定性的主要因素。在电解质设计中考虑这一因素将有助于未来电池的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfc8/11492167/7493ce193004/am4c10458_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验