Zhang Wenjing, Yu Jinqi, He Zitian, Guo Jiaxuan, Huang Changchao, Xu Qingqing, Dong Xianya, Yang Ziyi, Chen Beixi, Quan Cheng, Li Meiqing, Zhang Qi, Du Jidao
Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
National Cereals Technology Engineering Research Center, Daqing, 163319, Heilongjiang, China.
Theor Appl Genet. 2025 Sep 4;138(9):240. doi: 10.1007/s00122-025-04982-0.
Saline-alkali soil poses a severe threat to the cultivation and yield of soybean, which is an important oilseed and staple crop. As a key metabolic intermediate, S-adenosyl-L-methionine (SAM) and its associated methyltransferases (SAMMTs) play crucial but poorly understood roles in plant stress responses. This study investigated the expression of SAM-depend methyltransferase (SAMMt) family in soybean. A total of 69 identified GmSAMMt members were divided into 13 subfamilies with similar gene structures by phylogenetic analysis. The GmSAMMt members contained cis-acting elements involved in abiotic stress responses, hormone regulation, and plant growth and development. A tissue-specific expression analysis identified 43 GmSAMMt members with high levels of expression. Haplotype analysis and quantitative real-time PCR (qRT-PCR) screening identified GmSAMMt30 as the most promising candidate gene responsive to saline-alkali stress. In yeast heterologous expression assays, compared to the control strain INVScI(pYES2), GmSAMMt30 significantly enhanced the growth of recombinant yeast under saline-alkali stress, whereas GmSAMMt30 exhibited markedly inhibited growth relative to GmSAMMt30. In transgenic soybean hairy roots, the GmSAMMt30 genotype showed significantly better phenotypic performance under salt-alkali stress than K599(pSOY1) with lower leaf wilting and content of reactive oxygen species (ROS). In contrast, the GmSAMMt30 genotype showed increased sensitivity to salt-alkali stress, with more severe leaf wilting and a higher ROS content compared to K599(pSOY1). Therefore, the study lays the foundation for in-depth research on the soybean salt-alkali tolerance traits and its application in molecular marker-assisted breeding for this legume crop.
盐碱土对大豆(一种重要的油料和主粮作物)的种植和产量构成严重威胁。作为关键的代谢中间体,S-腺苷-L-甲硫氨酸(SAM)及其相关的甲基转移酶(SAMMTs)在植物应激反应中发挥着关键但尚未完全了解的作用。本研究调查了大豆中依赖SAM的甲基转移酶(SAMMt)家族的表达情况。通过系统发育分析,共鉴定出的69个GmSAMMt成员被分为13个具有相似基因结构的亚家族。GmSAMMt成员包含参与非生物胁迫反应、激素调节以及植物生长发育的顺式作用元件。组织特异性表达分析鉴定出43个高表达的GmSAMMt成员。单倍型分析和定量实时PCR(qRT-PCR)筛选确定GmSAMMt30是对盐碱胁迫最有潜力的候选基因。在酵母异源表达试验中,与对照菌株INVScI(pYES2)相比,GmSAMMt30在盐碱胁迫下显著增强了重组酵母的生长,而相对于GmSAMMt30,GmSAMMt30表现出明显受抑制的生长。在转基因大豆毛状根中,GmSAMMt30基因型在盐碱胁迫下的表型表现明显优于K599(pSOY1),叶片萎蔫程度更低,活性氧(ROS)含量也更低。相反,与K599(pSOY1)相比,GmSAMMt30基因型对盐碱胁迫的敏感性增加,叶片萎蔫更严重,ROS含量更高。因此,该研究为深入研究大豆耐盐碱性状及其在这种豆科作物分子标记辅助育种中的应用奠定了基础。