Suppr超能文献

使用电子病历进行计划外再入院的机器学习预测:医疗和外科患者群体中预测因素的重要性。

Machine learning predictions of unplanned readmissions using electronic medical records: Predictor importance across medical and surgical patient populations.

作者信息

Havranek Michael M, Hwang Aljoscha B, Funke Ilona, Kuhlen Dominique, Liedtke Daniel, Boes Stefan

机构信息

Competence Center for Health Data Science, Faculty of Health Science and Medicine, University of Lucerne, Lucerne, Switzerland.

Medical Department, Hirslanden Group, Zurich, Switzerland.

出版信息

PLoS One. 2025 Sep 4;20(9):e0331263. doi: 10.1371/journal.pone.0331263. eCollection 2025.

Abstract

Hospital readmissions prolong patient suffering and increase healthcare expenditures. While several studies have attempted to develop prediction models to reduce readmissions, most have demonstrated modest predictive accuracy. To improve upon prior approaches, we conducted an overview of systematic reviews to identify the most relevant predictor variables, then subsequently developed machine learning models in a retrospective, multisite study across eight hospitals. The patient sample comprised 200,799 inpatient stays from eligible hospitalizations, based on the Centers for Medicare and Medicaid Services (CMS) definition of unplanned readmissions within 30 days of discharge. We constructed random forest models and evaluated out-of-sample performance using the area under the receiver operating characteristic curve (AUC) across different train-test splits. The hospital-wide sample was divided into medical and surgical cohorts to investigate predictor importance across different patient populations. The average AUC score was 0.78 ± 0.01 (mean ± standard deviation [SD]). Patients' diagnoses were the most important predictor variables (contributing 18.4% ± 0.15 to the model's decision, mean ± standard error [SE]), followed by nursing assessments (11.2% ± 0.04, mean ± SE) and procedural information (10.8% ± 0.09, mean ± SE). Comparing medical and surgical patients, we found that medications and prior healthcare use (e.g., prior emergency encounters) were more important in the medical compared with the surgical cohort, whereas procedural information and healthcare provider information (e.g., physician caseload) were more relevant in the surgical relative to the medical cohort. In conclusion, we have established the feasibility of using Swiss electronic medical record (EMR) data to accurately predict unplanned readmissions. The reported variable importances may guide future research and inform development of clinical decision support systems aimed at reducing readmissions.

摘要

医院再入院会延长患者的痛苦并增加医疗费用。虽然有几项研究试图开发预测模型以减少再入院情况,但大多数研究显示预测准确性一般。为了改进先前的方法,我们对系统评价进行了概述,以确定最相关的预测变量,随后在一项涵盖八家医院的回顾性多地点研究中开发了机器学习模型。患者样本包括符合条件的住院治疗中的200,799次住院,这是根据医疗保险和医疗补助服务中心(CMS)对出院后30天内非计划再入院的定义确定的。我们构建了随机森林模型,并使用不同训练-测试分割下的受试者工作特征曲线下面积(AUC)评估样本外性能。将全院样本分为内科和外科队列,以研究不同患者群体中预测因素的重要性。平均AUC得分为0.78±0.01(均值±标准差[SD])。患者的诊断是最重要的预测变量(对模型决策的贡献为18.4%±0.15,均值±标准误[SE]),其次是护理评估(11.2%±0.04,均值±SE)和手术信息(10.8%±0.09,均值±SE)。比较内科和外科患者,我们发现与外科队列相比,药物治疗和先前的医疗使用情况(如先前的急诊就诊)在内科患者中更为重要,而手术信息和医疗服务提供者信息(如医生工作量)在外科患者中相对于内科队列更为相关。总之,我们已经证明了使用瑞士电子病历(EMR)数据准确预测非计划再入院的可行性。报告的变量重要性可能会指导未来的研究,并为旨在减少再入院的临床决策支持系统的开发提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/12410744/a8a9d028f648/pone.0331263.g001.jpg

相似文献

3
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
8
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
9
High Risk of Readmission After THA Regardless of Functional Status in Patients Discharged to Skilled Nursing Facility.
Clin Orthop Relat Res. 2024 Jul 1;482(7):1185-1192. doi: 10.1097/CORR.0000000000002950. Epub 2024 Jan 16.
10
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.

本文引用的文献

1
Should Body Mass Index Be Considered a Hard Stop for Total Joint Replacement?: An Ethical Dilemma.
Orthop Clin North Am. 2025 Jan;56(1):13-20. doi: 10.1016/j.ocl.2024.05.004. Epub 2024 Jun 21.
2
Validity of different algorithmic methods to identify hospital readmissions from routinely coded medical data.
J Hosp Med. 2024 Dec;19(12):1147-1154. doi: 10.1002/jhm.13468. Epub 2024 Jul 25.
4
Performance of advanced machine learning algorithms overlogistic regression in predicting hospital readmissions: A meta-analysis.
Explor Res Clin Soc Pharm. 2023 Aug 10;11:100317. doi: 10.1016/j.rcsop.2023.100317. eCollection 2023 Sep.
6
Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review.
J Clin Epidemiol. 2022 Feb;142:218-229. doi: 10.1016/j.jclinepi.2021.11.023. Epub 2021 Nov 16.
7
Application of machine learning in predicting hospital readmissions: a scoping review of the literature.
BMC Med Res Methodol. 2021 May 6;21(1):96. doi: 10.1186/s12874-021-01284-z.
8
How Good Is Machine Learning in Predicting All-Cause 30-Day Hospital Readmission? Evidence From Administrative Data.
Value Health. 2020 Oct;23(10):1307-1315. doi: 10.1016/j.jval.2020.06.009. Epub 2020 Sep 7.
10
Challenges Frequently Encountered in the Secondary Use of Electronic Medical Record Data for Research.
Comput Inform Nurs. 2020 Jul;38(7):338-348. doi: 10.1097/CIN.0000000000000609.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验