Fang Tingxue, Wang Jiawei, Bai Zongxuan, Wang Yuhao, Wang Nan, Xiang Dong, Cai Kedi
Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning 121013, China.
Institute of Ocean Research, Bohai University, Jinzhou, Liaoning 121013, China.
ACS Appl Mater Interfaces. 2025 Sep 17;17(37):52102-52111. doi: 10.1021/acsami.5c11431. Epub 2025 Sep 4.
It remains critical and challenging to synthesize non-noble metal catalysts with excellent hydrogen evolution reaction (HER) activity in a wide pH range. High-temperature pyrolysis is one of the main methods for catalyst synthesis but can be time-consuming and leads to agglomeration easily. In view of this, molybdenum carbide and molybdenum nitride composite (MoC@MoN) was prepared via CO laser irradiation technology. The catalytic activity of the as-prepared catalysts can be effectively regulated by controlling the usage of NaMoO·2HO and the applied CO laser power. In acidic and alkaline media, the as-prepared MoC@MoN requires an overpotential of only 63 mV and 34 mV, respectively, at a current density of 10 mA cm and exhibits considerable electrochemical and structural durability, making it a suitable candidate for hydrogen production in a wide pH range. Theoretical calculations reveal the surface adsorption and desorption properties of reactive hydrogen and confirm the energetically favorable hydrogen spillover on the heterostructured MoC@MoN interface. The construction of the heterostructured interface enhances the activation of HO* and further decreases the energy barrier of HO* dissociation, thereby promoting the Volmer step and the H* supply for HER on the MoC@MoN interface. The integration of efficient H* adsorption on MoN and easy desorption on MoC effectively accelerates the Tafel step and hydrogen spillover, resulting in excellent HER performance of MoC@MoN. The strategy presented in this paper may offer a unique and viable approach for designing and synthesizing high-performance, low-cost HER catalysts, applied in a wide pH range.
在较宽的pH范围内合成具有优异析氢反应(HER)活性的非贵金属催化剂仍然至关重要且具有挑战性。高温热解是催化剂合成的主要方法之一,但可能耗时且容易导致团聚。鉴于此,通过CO激光辐照技术制备了碳化钼和氮化钼复合材料(MoC@MoN)。通过控制NaMoO·2HO的用量和施加的CO激光功率,可以有效地调节所制备催化剂的催化活性。在酸性和碱性介质中,所制备的MoC@MoN在电流密度为10 mA cm时分别仅需要63 mV和34 mV的过电位,并且表现出相当的电化学和结构耐久性,使其成为在较宽pH范围内制氢的合适候选材料。理论计算揭示了活性氢的表面吸附和解吸特性,并证实了在异质结构的MoC@MoN界面上能量有利的氢溢流。异质结构界面的构建增强了HO的活化,并进一步降低了HO解离的能垒,从而促进了Volmer步骤以及MoC@MoN界面上HER的H供应。MoN上高效的H吸附和MoC上容易的解吸的结合有效地加速了Tafel步骤和氢溢流,导致MoC@MoN具有优异的HER性能。本文提出的策略可能为设计和合成适用于较宽pH范围的高性能、低成本HER催化剂提供一种独特且可行的方法。