神经元进化的一般原则揭示了一种可能是人类自闭症高发潜在原因的人类加速神经元类型。

A General Principle of Neuronal Evolution Reveals a Human-Accelerated Neuron Type Potentially Underlying the High Prevalence of Autism in Humans.

作者信息

Starr Alexander L, Fraser Hunter B

机构信息

Department of Biology, Stanford University, Stanford, CA 94305, USA.

出版信息

Mol Biol Evol. 2025 Sep 1;42(9). doi: 10.1093/molbev/msaf189.

Abstract

The remarkable ability of a single genome sequence to encode a diverse collection of distinct cell types, including the thousands of cell types found in the mammalian brain, is a key characteristic of multicellular life. While it has been observed that some cell types are far more evolutionarily conserved than others, the factors driving these differences in the evolutionary rate remain unknown. Here, we hypothesized that highly abundant neuronal cell types may be under greater selective constraint than rarer neuronal types, leading to variation in their rates of evolution. To test this, we leveraged recently published cross-species single-nucleus RNA-sequencing datasets from three distinct regions of the mammalian neocortex. We found a strikingly consistent relationship where more abundant neuronal subtypes show greater gene expression conservation between species, which replicated across three independent datasets covering >106 neurons from six species. Based on this principle, we discovered that the most abundant type of neocortical neurons-layer 2/3 intratelencephalic excitatory neurons-has evolved exceptionally quickly in the human lineage compared to other apes. Surprisingly, this accelerated evolution was accompanied by the dramatic down-regulation of autism-associated genes, which was likely driven by polygenic positive selection specific to the human lineage. In summary, we introduce a general principle governing neuronal evolution and suggest that the exceptionally high prevalence of autism in humans may be a direct result of natural selection for lower expression of a suite of genes that conferred a fitness benefit to our ancestors while also rendering an abundant class of neurons more sensitive to perturbation.

摘要

单个基因组序列能够编码多种不同的细胞类型,包括哺乳动物大脑中发现的数千种细胞类型,这一非凡能力是多细胞生命的关键特征。虽然已经观察到某些细胞类型在进化上比其他细胞类型更保守,但驱动这些进化速率差异的因素仍然未知。在这里,我们假设高度丰富的神经元细胞类型可能比稀有神经元类型受到更大的选择约束,从而导致它们进化速率的差异。为了验证这一点,我们利用了最近发表的来自哺乳动物新皮层三个不同区域的跨物种单核RNA测序数据集。我们发现了一种惊人的一致关系,即更丰富的神经元亚型在物种间表现出更大的基因表达保守性,这在涵盖六个物种的106个以上神经元的三个独立数据集中得到了重复验证。基于这一原则,我们发现新皮层中最丰富的神经元类型——第2/3层脑内兴奋性神经元——与其他猿类相比,在人类谱系中进化得异常迅速。令人惊讶的是,这种加速进化伴随着自闭症相关基因的显著下调,这可能是由人类谱系特有的多基因正选择驱动的。总之,我们引入了一个支配神经元进化的一般原则,并表明人类自闭症的异常高患病率可能是自然选择的直接结果,这种选择导致了一组基因的低表达,这些基因在赋予我们祖先适应性益处的同时,也使大量神经元对扰动更加敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ddb/12410989/589821b996a2/msaf189f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索