Murtaza Hudabia, Ibrahim Ahmed B M, Munir Junaid, Kumar Abhinav, Habib Mohamed A, Oza Ankit Dilipkumar, Ain Quratul
Department of Physics, University of Management and Technology Lahore Pakistan
Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Saudi Arabia.
RSC Adv. 2025 Sep 3;15(38):31609-31619. doi: 10.1039/d5ra03544a. eCollection 2025 Aug 29.
The high hydrogen storage capacity, stability, and reversibility of perovskite hydrides make them promising materials for the energy industry. They play a vital role in sustainable energy technologies, including fuel cells and hydrogen storage systems. This work offers a comprehensive understanding of the physical attributes of XClH (X = Li, Na, and K), utilizing the DFT-based Wien2K code. The quantum mechanical effects, along with Coulombic repulsions, are incorporated using the mBJ functional. For the assessment of the structural and thermo-dynamical integrity of XClH (X = Li, Na, and K), optimization curves, tolerance factors, and formation energies are evaluated. The second ordered stress energy tensor is employed to compute the elastic constants of cubic XClH (X = Li, Na, and K). The electronic properties are analyzed, which revealed indirect bandgaps of 0.29 eV, 0.55 eV, and 1.87 eV for LiClH NaClH and KClH, respectively. The electromagnetic interaction depicts that the studied hydrides possess higher divergence and dispersion in the visible range. The gravimetric densities for LiClH, NaClH, and KClH are obtained as 10.97 wt%, 8.38 wt%, and 6.92 wt%, respectively, which exceed the criteria mentioned by the US DOE for 2025, making these materials excellent contenders for renewable energy and hydrogen storage.
钙钛矿氢化物具有高储氢容量、稳定性和可逆性,使其成为能源行业中很有前景的材料。它们在包括燃料电池和储氢系统在内的可持续能源技术中发挥着至关重要的作用。这项工作利用基于密度泛函理论(DFT)的Wien2K代码,全面了解了XClH(X = Li、Na和K)的物理属性。使用mBJ泛函纳入了量子力学效应以及库仑排斥力。为了评估XClH(X = Li、Na和K)的结构和热力学完整性,评估了优化曲线、容差因子和形成能。采用二阶应力能张量来计算立方XClH(X = Li、Na和K)的弹性常数。对电子性质进行了分析,结果表明LiClH、NaClH和KClH的间接带隙分别为0.29 eV、0.55 eV和1.87 eV。电磁相互作用表明,所研究的氢化物在可见光范围内具有更高的发散和色散。LiClH、NaClH和KClH的重量密度分别为10.97 wt%、8.38 wt%和6.92 wt%,超过了美国能源部(US DOE)对2025年设定的标准,使这些材料成为可再生能源和储氢的优秀候选材料。