Suppr超能文献

静水压力对AcGaO的力学、热力学、结构、电子和光学属性的影响:对可再生能源系统的启示

Hydrostatic Pressure Effects on the Mechanical, Thermodynamic, Structural, Electronic, and Optical Attributes of AcGaO: Implications for Renewable Energy Systems.

作者信息

Murtaza Hudabia, Ain Quratul, Kumar Abhinav, Ali Atif Mossad, Oza Ankit Dilipkumar, Munir Junaid

机构信息

Department of Physics, University of Management and Technology, Lahore, Pakistan.

Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia.

出版信息

J Comput Chem. 2025 Aug 5;46(21):e70199. doi: 10.1002/jcc.70199.

Abstract

Bandgap engineering is the process of modifying a material's electronic structure to optimize its bandgap for specific applications. Applying pressure is an effective technique to alter a material's physical properties to meet device requirements. In this manuscript, we have investigated the impact of bandgap engineering through pressure application on the physical characteristics of AcGaO. Using the Wien2K code and the FP-LAPW method, we evaluated the material's properties under pressures ranging from 0 to 30 GPa, with additions of 5 GPa in each calculation. The Modified Becke-Johnson approximation was employed to accurately account for exchange-correlation effects. The elastic constants show a significant decrease with increasing pressure, indicating a reduction in the material's resistance to external strain. Lower speed values of the elastic waves suggest that the atomic bonding becomes weaker as the pressure is enhanced. Similarly, the Debye and melting temperatures decline as pressure increases. Electronic properties reveal a reduction in the indirect bandgap, while optical properties exhibit a shift from the higher energy region to the lower energy region under elevated pressures. The optical properties report a significant reduction in the polarization ability, absorption, and conductivity as the pressure is increased. This approach opens new possibilities for technological applications, as AcGaO's reduced bandgap and optical characteristics in the visible area make it an attractive contender for next-generation optoelectronic and energy storage devices.

摘要

带隙工程是指修改材料的电子结构以针对特定应用优化其带隙的过程。施加压力是改变材料物理性质以满足器件要求的有效技术。在本论文中,我们研究了通过施加压力进行带隙工程对AcGaO物理特性的影响。使用Wien2K代码和FP-LAPW方法,我们评估了该材料在0至30 GPa压力下的性质,每次计算增加5 GPa。采用修正的贝克-约翰逊近似来准确考虑交换关联效应。弹性常数随压力增加而显著降低,表明材料对外加应变的抵抗力降低。弹性波的较低速度值表明,随着压力增加,原子键合变弱。同样,德拜温度和熔点随压力升高而下降。电子性质显示间接带隙减小,而光学性质在高压下表现出从高能区向低能区的转变。光学性质表明,随着压力增加,极化能力、吸收和电导率显著降低。这种方法为技术应用开辟了新的可能性,因为AcGaO在可见光区域减小的带隙和光学特性使其成为下一代光电器件和储能器件的有吸引力的候选材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验