Suppr超能文献

热/多孔粘弹性模型的统一间断伽辽金分析

Unified Discontinuous Galerkin Analysis of a Thermo/Poro-viscoelasticity Model.

作者信息

Bonetti Stefano, Corti Mattia

机构信息

MOX-Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.

出版信息

J Sci Comput. 2025;105(1):11. doi: 10.1007/s10915-025-03016-7. Epub 2025 Sep 2.

Abstract

We present and analyze a discontinuous Galerkin method for the numerical modeling of a Kelvin-Voigt thermo/poro-viscoelastic problem. We present the derivation of the model and we develop a stability analysis in the continuous setting that holds both for the full inertial and quasi-static problems and that is robust with respect to most of the physical parameters of the problem. For spatial discretization, we propose an arbitrary-order weighted symmetric interior penalty scheme that supports general polytopal grids and is robust with respect to strong heterogeneities in the model coefficients. For the semi-discrete problem, we prove the extension of the stability result demonstrated in the continuous setting and we provide an a-priori error estimate. A wide set of numerical simulations is presented to assess the convergence and robustness properties of the proposed method. Moreover, we test the scheme with literature and physically sound test cases for applications in the geophysical context.

摘要

我们提出并分析了一种用于开尔文 - 沃伊特热/孔隙粘弹性问题数值建模的间断伽辽金方法。我们给出了模型的推导过程,并在连续情形下开展了稳定性分析,该分析适用于全惯性问题和准静态问题,并且对于该问题的大多数物理参数具有鲁棒性。对于空间离散化,我们提出了一种任意阶加权对称内部罚格式,它支持一般的多面体网格,并且对于模型系数中的强非均匀性具有鲁棒性。对于半离散问题,我们证明了在连续情形下所展示的稳定性结果的推广,并给出了一个先验误差估计。我们给出了大量的数值模拟,以评估所提方法的收敛性和鲁棒性。此外,我们用文献中的以及物理上合理的测试案例来检验该格式,以用于地球物理背景下的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5baf/12405049/0676b4539bba/10915_2025_3016_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验